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ABSTRACT
The Blackbox project has been collecting programming activity data
from users of BlueJ (a novice-targeted Java development environ-
ment) for nearly five years. The resulting dataset of more than two
terabytes of data has been made available to interested researchers
from the outset. In this paper, we assess the impact of the Blackbox
project: we perform a mapping study to assess eighteen publica-
tions which have made use of the Blackbox data, and we report on
the advantages and difficulties experienced by researchers working
with this data, collected via a survey. We find that Blackbox has
enabled pieces of research which otherwise would not have been
possible, but there remain technical challenges in the analysis. Some
of these – but not all – relate to the scale of the data. We provide
suggestions for the future use of Blackbox, and reflections on the
role of such data collection projects in programming research.
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1 INTRODUCTION
Researching programming education can be difficult. A researcher
may have several interesting research questions, but finding or
generating sufficient data can be a challenge. Many studies are pub-
lished based on limited data (quantitative or qualitative) gathered
from a single cohort, often with only a few dozen participants. Sta-
tistical analyses of such a dataset, as well as generalised conclusions,
are necessarily of limited reliability and value – both because of the
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small sample size, and because the data is from a single-institution,
often a single teacher (who may be the researcher themselves).

It seems advantageous to have a central large shared data pool
which researchers could access. This idea led to the creation of
the Blackbox project. Blackbox [9, 34] is a data collection project,
designed and implemented by the creators of the BlueJ IDE, an
educational Java development environment. Blackbox collects ac-
tivity data from BlueJ users, including source code, edit sequences,
testing and execution interactions, and compilation results.

Participation in the Blackbox data collection is voluntary, via an
explicit opt-in choice of each user. Approximately 40% of BlueJ users
choose to participate. Since BlueJ has several million users (who
are typically novice programmers) per year, Blackbox has a large
repository of novice programmer interaction data, which can form
the basis of various research studies. Blackbox currently contains
records of over 30 million programming sessions, including 300
million compilation events.

Blackbox was intended, from its conception, as a shared data
repository that would be made available to various research groups
for the investigation of many different research questions. It was
hoped that the project could enable, maybe even stimulate, research
that would otherwise be difficult or impossible to conduct.

This goal implicitly poses opportunities and difficulties. Making
the data available to other interested researchers can increase the
value of the data collection, thus better justifying asking users to
participate and the effort in collecting and storing it. However,
collecting observational data without a specific experiment carries
multiple risks. The activity data is devoid of demographic and
contextual data: we do not know who is programming, any details
about them, or what their aim is. Additionally, the trade-offs of
granularity and complexity of data collection and storage formats
had to be designed based only on tentative predictions of future
research questions and researchers’ needs. It was possible that the
data collected would not be useful to anyone.

Thus at the outset of the project there were several open ques-
tions about the project’s success. Would it be possible to collect a
meaningful amount of data? Would a single dataset in a fixed data
format be useful to multiple different and diverse researchers and
studies? Would other researchers be interested in working with an
observational dataset when they had no opportunity to influence
the details of the collected data or apply an intervention? Could a
data access format be provided that makes it sufficiently easy, at
the same time as sufficiently flexible, to be accessed with available
technical expertise in research groups? Blackbox has now collected
data for almost five years, and the repository has been available for
researcher access for the whole duration. This is sufficient time to
now conduct an investigation into the answers to these questions.
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In this paper, we present a retrospective of the Blackbox project
to date. Our contributions include:
• Quantitative results of the data collection. This includes the
counts and size of the collected data, as well as some logistic
details of operating a large-scale collection project, including
server load and storage (Section 2).
• A mapping study of the literature published using Blackbox
data. This helps us examine the use of the data by multiple
research groups and provides a lens through which to assess
the project’s impact (Section 3).
• A survey of the researchers who used Blackbox or similar
datasets, to examine the successes and difficulties of using such
data for programming education research (Section 4).
The results presented here illustrate some of the possible scope

and limitations of using Blackbox, and will be of use to other re-
searchers contemplating working with this data in future. This
paper also provides a useful examination of the more general role
of large-scale datasets within computing education.

1.1 Related Work
The most closely related pieces of work are the studies based on
the Blackbox data, which are covered in the mapping study in
section 3. There exist several other similar datasets of novice pro-
gramming data, such as code.org’s Hour of Code dataset [5] and
CloudCoder [32]. Ihantola et al. [16] and Hundhausen et al. [15]
present useful overviews of these kinds of dataset. We are, however,
not aware of a detailed retrospective evaluation of the usefulness
and impact of a single dataset as presented in this paper.

2 BLACKBOX DETAILS
The first time a new user starts BlueJ, a novice Java IDE often used in
programming instruction at school or introductory university level,
they are asked whether they want to opt-in to the Blackbox data
collection. Out of approximately 2.2 million unique users per year,
roughly 40% do so. If a user has opted in, the Blackbox infrastructure
collects activity details, including:
• The full source code of the user’s project. For anonymisation
purposes, the header comment of each class is removed.
• Edit actions at the source line level. Each time the cursor leaves
a line, or the user compiles, the edit step is recorded.
• Compilation events, including success or failure, and any asso-
ciated error information (source position and message).
• Use of BlueJ’s testing tools, interactive method invocations, and
various other IDE features.
Data collection began in June 2013. As of April 2018, the Blackbox

database consumes 2.31 terabytes of disk space. It contains records
of 32.1 million sessions from 2.58 million users, and 306 million
compilation events. The server has received 2.36 billion separate
activity items. (All items given to 3 s.f.)

2.1 Practical details
The data is collected into a MySQL database on a single machine.
Typical processor load on the collection server (a machine pur-
chased in 2013, see Brown et al. [9] for specifications) is estimated
at less than one core, and up to 2–4 cores during peak times.

The database is live-mirrored to a second machine which is
used for analysis purposes. The decision to separate the recording
machine from the analysis machine has worked well. The analysis
machine is used sparsely, but when it is used, is often used to
maximum capacity. Separating data collection and analysis across
two machines provides a guaranteed prevention of the analysis
interfering with the data collection.

Data collection has been almost continuous since 2013, with
only a small number of interruptions. Only three recording outages
lasted longer than a few minutes:
(1) The initial data collection was not multi-threaded, and some

data was lost due to server requests timing out during busy
periods before this was fixed.

(2) The domain registration was accidentally allowed to lapse, and
for a day or two some data was not recorded.

(3) The only major change to the schema to date was performed
in August 2017, involving recording down-time of 6 days. Un-
like the others, this outage was pre-planned and Blackbox re-
searchers were notified in advance.

2.2 Original data estimates
The original Blackbox proposal [34] included an upper limit esti-
mate of the expected data volume, based on user numbers at the
time and the maximum 100% opt-in rate, which was used to decide
the required specification of the server hardware. It stated:

“At current usage levels. . . this will lead to a maximum
of around 27,000 users per day, performing on average
3 sessions per day, and generating about 100 events per
session over an average period of 90 days. This would
mean overall a maximum case of 8 million events per
day, or just under 100 events per second, and a total of 3
terabytes of data per year.”

We can now compare these initial estimates (adjusted to the
actual opt-in rate of 40%) to actual observed data volumes. Blackbox
presently sees 5,000 to 20,000 users per day, performing an average
of 2-2.5 sessions per day, with around 80 events per session. The
average so far in 2018 is 2 million events per day, and the total data
size is now 2.3 terabytes. This means that most of the estimates
were quite accurate, even though they were made before any data
was recorded. The main discrepancy is that the overall database
size is smaller than estimated, probably due to the compression
afforded by storing only diffs for edits.

2.3 Project administration
To gain access to the data, a lead-researcher has to be identified who
is a permanentmember of staff of an established research institution.
This lead-researcher can then request access for other researchers,
whomay be students. All access requests require the lead-researcher
to provide a short description of the research aims, and to sign an
ethics declaration and code of conduct, which includes assurances
to maintain the confidentiality of the data. Researchers are given a
copy of the 60 page Blackbox handbook.

The Blackbox analysis machine has accounts for around 130
users. At a rough estimate of an average of three users per research
group, this means a little over 40 research groups have likely signed
up for access.
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As Blackbox administrators, we offer the following observation:
our contact with users interested in the dataset has typically con-
sisted of talking to academics about the initial data access, followed
by correspondence with students about intricacies of the actual
data access and analysis. In several cases, the queries we received
from students indicated a weak understanding of SQL database
queries and incomplete programming knowledge.

3 BLACKBOX USAGE: A MAPPING STUDY
Blackbox has been running for almost five years. Although research
publication has an inherent lead-time, this seems long enough to
investigate the studies which have resulted from the Blackbox data
so far. Therefore we conducted a small mapping study. A mapping
study, such as the one performed by Kaijanaho [19], examines
the research that has been carried out in an area, with a focus on
which topics have been investigated. Unlike a systematic review, a
mapping study does not try to synthesise the results of the research.
In planning the study, we followed the guidelines by Petersen et al.
[27] for conducting mapping studies in software engineering.

3.1 Design
3.1.1 Scoping. In this study, we were interested in any papers

that had directly analysed Blackbox data (primary studies), or had
used any results of primary studies in a detailed further analy-
sis (secondary studies). This narrow focus meant that the studies
(which shared the same data source) could be summarised coher-
ently – we deliberately chose not to consider studies performed on
similar datasets to Blackbox, which would have been a much wider
analysis.

3.1.2 Search Strategy. We conducted our search with the as-
sumption that all published Blackbox studies will cite at least one
of the original Blackbox papers. Thus we conducted a snowball
search (as per Wohlin [36]), beginning with two early publications
on Blackbox [9, 34], and one of the better-known results papers
by the administrators of the Blackbox dataset [3]. We first looked
for all citing papers of these initial three in both the ACM digital
library and Google Scholar (de-duplicating by hand). Then, any pa-
pers found to be Blackbox primary or secondary studies had their
citations examined, repeating until we found no more Blackbox
primary or secondary studies in the references. As a sanity check,
before conducting the snowball search we wrote down any Black-
box papers we knew a priori, and we made sure that they were in
the returned results.

3.1.3 Classification. We did not decide classifications ahead of
time. Instead, each relevant paper was examined by two of the
authors, who independently constructed categorisations for the full
set of papers. These keywords were then compared and merged
into a single set of categorisations through discussion, and papers
were re-categorised using this single categorisation. A narrative
summary was then produced.

3.1.4 Pre-registration. The protocol described above was pre-
registered on 21st February 2018 at https://osf.io/y2amu/ before
conducting the search.

3.2 Search Outcome
The search was carried out on the 21st to 23rd of February 2018.
The pre-registered protocol was followed with minor adjustments
for two unanticipated situations. Google Translate was used to
examine non-English papers (a situation not anticipated in the
original protocol). We also discovered one paper via Google Scholar
which at the time was an accepted pre-print; we included this as
a search result. In total, 304 citation links were assessed, which
resulted in 135 unique papers being examined. Including 2 of our
original 3 seed papers1, 16 publications were found that that were
primary Blackbox studies [2–4, 7–9, 11, 18, 20, 22, 24–26, 28–30].
No secondary studies were found.

All papers that were known to us before beginning the search
were found in the search, except McCall and Kölling [23]. This
paper is indexed by Google Scholar and did cite Brown et al. [9]
but it seemed that a technical issue with IEEE’s citation extraction
meant that this citation was not automatically processed (and the
paper did not cite any other Blackbox papers, so was not found
otherwise by our snowball search). We manually added this paper
to the results.

In hindsight, our search protocol was over-elaborate: every pri-
mary Blackbox study would have been found by simply looking
through the Google Scholar citations for Brown et al. [9] (except
for that paper itself).

We made one further unplanned alteration to the search. The
original search took place before the papers from SIGCSE 2018 were
indexed on the ACM digital library and Google Scholar. Conscious
that there may be relevant papers published at SIGCSE 2018, we
re-checked the direct citations of the Brown et al. [9] paper on
the ACM digital library and Google Scholar on 5th March 2018,
which yielded one further publication by Becker et al. [6], for a
final total of 18 publications (16 original, 1 manual correction, 1
extra) [2–4, 6–9, 11, 18, 20, 22–26, 28–30].

3.3 Analysis Outcome
Two of the authors acted as coders. They independently created a
tagging scheme for the full set of 18 publications, and then jointly
agreed a single tagging scheme. They then independently tagged
all 18 publications using the new scheme. This resulted in 89%
agreement (of all tag-paper pairings), 5% where one or both re-
searchers felt more clarification was needed on tag definitions, and
6% disagreement. A final discussion achieved 100% agreement.

Most papers described work which had been carried out, while
some papers (in particular, Kurtiker and Wagh [22], Mirza et al.
[24, 25]) described work which was planned. We tagged all work
by topic regardless of whether it had or had not been carried out
(in the spirit of a mapping study – which looks at topics, rather
than results). In our results section, however, we note the planned
versus carried-out distinction.

3.4 Results
Of the 18 papers examined, three were published in 2014, four
in 2015, three in 2016, five in 2017, and three in 2018 (up to early

1Utting et al. [34] was a seed paper for the search but featured no Blackbox analysis,
therefore is not eligible for consideration as a result of the search.

https://osf.io/y2amu/wiki/home/
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March). Seven of the papers had one or more of the Blackbox admin-
istrators as authors2, and the remaining papers could be separated
into nine disjoint author clusters (thus ten in all).

3.4.1 Topics. The most popular topic was examining errors in
code, with 13 of the 18 papers [2–4, 6–9, 18, 22, 23, 26, 28, 29]
investigating some aspect of programming errors. Five of these
papers relied solely on using the content of the Java compiler’s
error messages (which are known to change between versions,
making the analysis fragile), while eight [2–4, 7, 8, 23, 26, 29] made
use of a custom error classification system that was partially or
totally independent of the compiler. Six papers split the errors into
higher level categories (e.g. syntax vs semantic), ten investigated
error frequencies, six analysed time-to-fix. Two papers looked at
the content of error messages, and two investigated suggesting
possible fixes for errors. Four papers examined code style issues
and two were concerned with plagiarism detection.

In total, thirteen papers performed a manual or automatic analy-
sis of Java source code, while the others were based on non-source
data, such as numbers of compile errors, numbers of edits, etc.
Only Santos et al. [29] made any use of machine learning tech-
niques to analyse the data.

Not all data collected in Blackbox saw much use. Only de Souza
et al. [11] made use of the JUnit test-related data subset. Kurtiker
and Wagh [22] planned to make use of local participant tagging
to add demographic data, but to date only Ahadi et al. [2] have
actually done so. Jadud and Dorn [18] used the location to analyse
country differences, and two other papers [6, 26] have made use of
country locations to constrain analysis sets. Several other parts of
the data (e.g. dynamic invocations, exceptions) have not yet been
used in any published work.

3.4.2 ResearchMethodologies. Ten papers applied a pre-existing
theory to analysing the dataset. Three of them used the data to
construct a model which could be used in future work (and a further
paper planned to do so). Many of the papers performed exploratory
data analysis without a particular theory, and/or reported results
without using them to construct an explicit model.

Two papers described replications of previous work3: Jadud and
Dorn [18] used the dataset to replicate earlier work on Jadud’s error
quotient, and Ahadi et al. [2] replicated earlier Blackbox work by
Brown and Altadmri [8] in a local context.

4 BLACKBOX USAGE: RESEARCHER SURVEY
The published papers on Blackbox reveal some interesting informa-
tion about topics of interest, but they cannot capture two aspects in
particular. One is the detailed experience of researchers in using the
data (was it easy or hard, what were the challenges, etc.) and the
other is the possible experience of researchers who were perhaps
interested, but did not use the data for a completed published study.
To try to study these two cases, we conducted an online survey of
programming researchers.

2To clarify: authorship is not a condition of dataset use, so thismeans the administrators
were actively acting as researchers in this work.
3Several papers presented tables of compiler error frequencies and compared them to
previous such results in other work, but we did not class this alone as a replication.

4.1 Design
4.1.1 Motivation. We had three informal primary hypotheses

which we wanted to investigate:
• Sharing the Blackbox data is useful to researchers, due to the
large data size and the convenience of not needing to collect your
own data.
• Complex SQL databases are too difficult for many computing
education researchers and their students to work with effectively.
• Many researchers have interesting questions, but frequently com-
puting education researchers lack the analysis techniques to be
able to map high-level research goals to actual analysis strategies
of source code.
We were also generally interested in opinions and experiences

surrounding the use of Blackbox (or similar datasets) even if they
did not relate directly to these three themes.

4.1.2 Survey Design. The online survey had two main branches.
A key question early in the survey was:

What is your relationship to Blackbox?
(1) I have signed up for access and have used the data for research.
(2) I have signed up for access, but have not really used it.
(3) I have heard of it before now, but I have not signed up for access.
(4) I have not heard of it before now.

If the respondent answered with one of the top two options (a
“Blackbox user”), they were asked a set of questions about their
actual or planned use of Blackbox, in order to capture the experi-
ence of users who used or planned to use the data. If one of the
bottom two answers were chosen (a “Blackbox non-user”), they
were asked questions about their use of, and opinions on, similar
datasets, in order to capture the experience with other datasets
for potential comparison. These open-ended text questions were
primarily designed as prompts to help explore one of our three
themes. The study followed appropriate ethical procedures and was
approved by the King’s College London ethics committee.

4.1.3 Pre-registration/Materials. The study was pre-registered
on 14th February 2018, prior to the beginning of data collection,
at https://osf.io/z48v7/ which includes the full survey in the Files
section.

4.1.4 Outcome. Data collection was carried out from 14th Feb-
ruary to 2nd March 2018 inclusive. The survey was advertised on
the Blackroom (a Blackbox users’ forum), the mailing list for a rele-
vant Dagstuhl seminar, the csed-research mailing list, on Twitter
by several of the authors, and by directly emailing all listed authors
on the original 17 papers we found (see section 3.2) who did not
work for King’s College London (the authors’ own institution). We
received 21 complete responses to the survey: 13 responses were
from Blackbox users, and 8 were from non-users.

4.1.5 Threats to validity. One threat to the survey’s validity is
that we may not have a representative sample of the Blackbox users
and non-users. Researchers may have been more likely to return
the survey if they used the data, and we may not have captured
non-users who could have used it but did not. However, it is difficult
to see how this threat to validity can be avoided.

https://osf.io/z48v7/
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Another threat to validity is that the survey was advertised and
analysed by the authors, several of whom act as Blackbox adminis-
trators. Although the survey was anonymous, the answers about
the respondent’s own research potentially allowed identification.
Participants were specifically assured that their responses would
be treated professionally and that any decision to respond (or not)
or response content would not influence any future treatment by
the Blackbox administrators. However, it is possible that some par-
ticipants may have altered their content of their responses to be
less negative about the project.

4.1.6 Analysis. The responses were analysed by two of the au-
thors performing an iterative process of open coding for thematic
analysis: first, they made a pass through the whole dataset and
formed an individual set of tags for the responses. Then they agreed
on a canonical set of tags, and made another pass to tag the data us-
ing this set of tags. Inter-rater reliability was assessed using Cohen’s
Kappa. This was found to be low (less than 0.75) so an additional
pass was made after discussing and clarifying the definition of the
tags. This second pass resulted in a median Kappa of 0.735, and
another pass was not conducted – the union of the two researchers’
tagged items was used for each tag, and since these results were
primarily used as a basis for a higher level manual summary, we
considered this level of agreement to be sufficient.

4.2 Results
4.2.1 Demographics. Participants were asked about their re-

search area (free text response): 12 mentioned computing education,
7 mentioned software engineering. They were asked for their role:
11 were permanent academic staff, 8 were postgraduate students,
none were postdocs. They were asked for their relation to Blackbox:
9 were users who had signed-up and used the data, 4 said they had
signed up but not really used the data, 6 had heard of the project
but not signed up, and 2 had not heard of it before.

We asked each respondent for the role of the person responsible
for directly analysing the data. Of the 13 responses from those who
had signed up, 3 mentioned academic staff, 4 mentioned undergrad-
uate students, 7 mentioned postgraduate students and 1 mentioned
research assistants. The numbers do not add up as some responses
mentioned multiple groups, and there could be double-counting if
both a PhD student and their supervisor filled in the form (which
we cannot know as the survey was anonymous). However, this does
indicate that the majority of analysis was performed by students.

4.2.2 Ranking Exercises. The results of all ranking exercises
given here use the mean rank, specified to one decimal place.

Blackbox users were asked to perform two ranking exercises.
The first involved ranking Blackbox’s features in importance to the
respondent’s work (rank 1 being most important, 7 least important):

Feature Mean rank
Large size of data set 2.8
Access to source code 2.8
Ability to see edits over time for each user 2.9
Compiler error data 3.8
Other IDE usage data 4.9
Ability to geographically partition users 5.0
Ability to tag users for local experiments 5.8

The next question asked for rankings of Blackbox’s features in
terms of how problematic they were (rank 1 beingmost problematic,
rank 7 least problematic):

Feature Mean rank
Lack of information onwhat tasks users are accomplishing
(lack of specific assignments)

2.5

The need to write your own software to pull information
from the database

3.3

The need to write your own analysis of Java source code 3.7
Short-lived duration of many users in the dataset 4.1
Lack of demographic information on individual users 4.2
Data is Java-only; no other programming languages 4.8
Data is BlueJ-only; no other Java IDEs/editors 5.5

Blackbox non-users were asked to perform one ranking exercise:
to rank Blackbox’s features by what would have made the data more
suitable (rank 1 being most important, rank 8 least important):

Feature Mean rank
Adding more programming languages besides Java 3.0
Information on the user’s current assignment/task 3.1
Adding demographic information 3.9
Adding more editors/IDEs besides BlueJ 4.0
More long-term tracking of users 4.4
Better support for tools to analyse source code data 5.7
More advertising (I was unaware of Blackbox) 5.9
Better support for tools to access/filter the data 6.0

4.2.3 Text Responses. One theme of interest was how impor-
tant the Blackbox data was to each respondent’s research. Five
respondents said that Blackbox was essential to their research:
“The research was only made possible by having Blackbox avail-
able”, “I was only going to go after this question because of the
existence of Blackbox”, “Without Blackboxmuch of this workwould
not be possible. I would have had to alter everything.” Five other
respondents mentioned that the scale of the data was a major ad-
vantage: “[The] worldwide availability of such facility Blackbox
data collection project made our research more fascinating and
interesting”, “Some things we concluded from mining the Blackbox
data we would hesitate to conclude using [our own data].”

The Blackbox dataset is an SQL database with many different ta-
bles. Eight respondents mentioned having difficulty understanding
the structure of the database: “There’s such rich data that under-
standing the table structure can take a while”, “We spent a long
time trying to figure out to get what we wanted”, “it was difficult to
link so many tables”. Five respondents explicitly stated that more
examples or tutorials would be useful.

Four respondents expressed a desire to be able to export the data
to a single CSV file. Four respondents also stated that they would
like to be able to download the data locally to their own machine
for analysis.

Three respondents independently stated that all they wanted
was a temporal succession of source code snapshots with compiler
errors, without the rest of the data that Blackbox provides, suggest-
ing that this is a particularly common use-case. One respondent
had a particular use case (omitted here to guarantee respondent
anonymity) which Blackbox satisfied, stating “if anything like that
was overlooked it would be problematic”.
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The most common desire for additional data in Blackbox was
for information about the task the student was working on and/or
their progress towards a correct answer, with eight respondents
making mention of this: “[I would like] information on the task
that the student is trying to achieve, including information on the
correctness of the solution”.

Respondents reported a wide variety of topics. We choose not
to report specific individual items here (as, especially combined
with the mapping study, this could identify who responded), but
common higher-level themes were analysis of students’ behaviour
either with respect to success (four respondents) or to details like
emotional state (two respondents). Two respondents mentioned
plagiarism detection. Two others used the data as a code repository
for testing error detection or correction tools. Programming errors
were a very common item, mentioned by nine respondents.

Three respondents mentioned doing some analysis by hand.
Where they mentioned programming languages that they used or
would like to use for analysis, the main languages mentioned were
Python (four respondents) and R (three respondents).

5 DISCUSSION
For further discussion, we now synthesise the results of themapping
study and the user survey.

5.1 Impact
Our mapping study found eighteen publications that used the Black-
box data. This figure is perhaps unrepresentative of the impact of
Blackbox, as several of the publications featured Blackbox adminis-
trators as authors. However, excluding the Blackbox administrators,
a total of nine disjoint sets of researchers used the data, which we
believe is sufficient to show that the dataset has had a reasonably
wide impact: we are not aware of another computing education
dataset with such wide usage.

5.2 Topics and outputs
Our survey and mapping study confirmed that the study of pro-
gramming errors remains the most popular topic to investigate with
Blackbox. An initial flurry of papers looked at compiler message
frequency. This is a somewhat shallow analysis technique, both in
the sense that it requires little processing and also that compiler
error messages can change with different Java releases and between
different compilers, rendering the results quite fragile.

Overall, however, topics that have been investigated are not
restricted to programming errors, and it seems that the dataset is
versatile. Several of the publications and survey responses made
mention of using the database solely as a repository of program
code without mention of education.

5.3 Data capture
One of the central challenges of the Blackbox project was that the
data capture is designed independently of any individual experi-
ment or analysis. The intention of the original design was to capture
data that would support a wide variety of experiments. Therefore
it is to be expected that several researchers in our survey found
the data to have more information than they individually needed.
However, it is clear from the survey that there is one especially

common use case: the need to obtain a series of temporally ordered
source code snapshots plus compile errors. This data is present
in the Blackbox dataset, but perhaps more could be done to make
this view of the data easier to access for new researchers. For any
individual researcher, more is not better – but the set of researchers
overall would be smaller if not all data was recorded. As one respon-
dent said, “One advantage... is the detail of the data. If anything
like [the unique feature they needed] was overlooked it would be
problematic.”

There remain several features of the Blackbox data which have
seen little exploration. Blackbox includes some run-time behaviour
such as exceptions and invocation results, which have not yet been
used in any published work. The testing framework aspects have
only been used by one publication [11] while the version control
recording has also not been used. The general pattern is that IDE-
agnostic, code-centric features such as source code and compilation
errors have been the focus of much analysis, while the more IDE-
related and workflow features (code invocations, testing, version
control) have received little attention.

One of the major drawbacks of the Blackbox dataset is that the
recording of programming activity is not explicitly linked to any
information on what the programmer is trying to achieve, or any
measure of their progress. This is inherent in the design: we record
users of the BlueJ tool, and they could be using the tool for any
purpose. This drawback was confirmed as an issue by existing
Blackbox users in our survey, and was ranked the second most
important drawback by non-users. A further issue is the lack of
demographic information in Blackbox, although this wasmentioned
less by existing users, and ranked lower by non-users. Blackbox
includes a mechanism that allows researchers to establish unique
ID numbers, which could then be used to collect and link contextual
and demographic data about individual users. However, only one
paper [2] has used this mechanism.

Another additional mechanism is that BlueJ extensions can be
implemented to record extra data (to a separate server controlled
by the individual researcher) that can be tallied against Blackbox
users. This mechanism has not yet been used by any researchers.
It seems that in general, the convenience of the large-scale pre-
existing dataset outweighs any additional gain from implementing
extra tools or gathering additional information from a local study.

The highest-ranked drawback for Blackbox by non-users was
that the data is Java-only, suggesting that the single language aspect
(again, inherent in using BlueJ as the data source) may prevent sev-
eral researchers making use of the data. One researcher responding
to the survey mentioned that they ended up using Java in their
work because they wanted the scale of Blackbox: “We actually had
to switch languages that we supported to use Blackbox data. We
used [other programming languages] to begin with and Blackbox
was all Java.”

5.4 Scale
The scale of Blackbox is reflected in our results as both an advan-
tage and disadvantage. Survey respondents mentioned scale as an
important aspect that helped to better generalise their results (and
was ranked as the joint most important feature in a ranking exer-
cise), and several papers used the scale of the data as a way to “sell”
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their paper. However, it was also mentioned by survey respondents
as causing difficulties with the analysis, leading to long-running or
more complex analysis. Several uses of the country-identification
feature of Blackbox in published papers felt to us like a way to
simply subset the data to a more manageable size.

In some senses, for unfiltered analysis, Blackbox is now as large
as it needs to be. One of the authors of this paper recently ran
some analysis on the data, which took a long time to run on the
full data-set: approximately 120 [wall clock] hours usage of all 12
cores on the analysis machine. For parallelisation, it was randomly
sliced into a hundred sub-tasks. Each sub-task produced results that
were almost exactly equal to each other (due to the law of large
numbers), leading to the obvious question: if one percent of the
data produces a statistically reliable sample of the full dataset, is
there any need to analyse the full dataset? It should be noted that
this point quickly disappears if the data is filtered: for example, only
one or two percent of Blackbox users make use of BlueJ’s version
control support, and separately only a few percent use unit tests.
Therefore, if one wanted to analyse the intersection of two such
features, the dataset of interest can be much smaller than the full
dataset.

5.5 Privacy
One faster way to analyse the full dataset would be to use big data
tools, such as a map-reduce framework. These tools tend to intro-
duce a tension between the faster analysis available in the cloud,
versus controlling access to the data [13, 33]. It is impossible to
completely anonymise source code without almost destroying it.
There are examples in the Blackbox dataset of users using people’s
names for classes, variables, in string literals and so on. Unless
every token in the data is replaced with a generic example (which
would remove useful context, not to mention the technical chal-
lenges of also anonymising compiler and run-time errors and so
on), it is inevitable that some of the data is not truly anonymous.
For this reason, access to the data is restricted, and requests both for
an anonymous subset (which we believe to be impossible without
human examination) and to take copies of the data for analysis
elsewhere have been refused: all primary analysis should take place
on the analysis machine. Thus at present, the data access policy
prevents the use of big data analysis in an external cloud or use in
public data challenges such as the annual Mining Software Reposi-
tories data challenge.

5.6 Tools and techniques
A number of researchers developed software tools for themselves
to aid in their analysis of the data. Theoretically, some of these
tools might be shared between researchers, and the Blackbox team
provides a forum to facilitate this sharing of tools and informa-
tion. No-one in the survey, however, made mention of re-using
tools besides those provided by the Blackbox administrators. In the
published papers, some researchers re-used their own tools from
previous studies, but apart from one replication [2] where tools
were re-used, there was no tool sharing between researchers. The
forum for the Blackbox community (the “Blackroom”) receives very
low traffic. This may be because there are few long-term users of
the Blackbox dataset: apart from the Blackbox administrators, only

two research groups have issued multiple publications using the
Blackbox data. Given that each researcher seems to conduct only an
isolated piece of research with the data, there is little opportunity
to build cohesive sets of tools that are shared and maintained.

With machine learning being a popular area of interest with
many researchers at the moment, and tools like Google’s Tensor-
Flow [1] and techniques such as deep learning gaining in popularity,
it was interesting that none of the survey respondents mentioned
machine learning, and only one paper [29] actually used machine
learning on the data. This may be because machine learning is dif-
ficult to directly apply to program code (which has a complex and
exact intra-relational structure), or because the researchers who
are using the data do not have a machine learning background with
the required knowledge and skills.

Anecdotal observations of the Blackbox administrators were
backed up by the survey, suggesting that most of the people doing
analysis on Blackbox data are undergraduate and postgraduate
students. The difficulties in analysing Blackbox thus appear at “both
ends”: the dataset itself is a complex relational database of large
size, and those who are trying to analyse it sometimes fall short of
being fully competent and practised programmers.

5.7 Methodologies
Many of the Blackbox papers lacked a formal theory as the basis for
their investigation, and most did not construct any kind of model
from the data that could be used for future work. Many of the
papers were largely exploratory in nature, analysing and reporting
on the dataset without an explicit connection to wider theory. This
may simply be symptomatic of being “early days” in analysing
these kinds of dataset: given a new data source it is perhaps to be
expected that the early work is exploratory. It may mirror a wider
pattern in computing education literature, where papers have been
criticised for being largely experience-centric rather than theory-
driven (see Valentine [35] for the original critique, and Guzdial [14]
for a rebuttal). Alternatively, it may be a sign of “looking for your
keys under the street lamp”: the easily available large-scale dataset
may encourage researchers to build their work around the data,
rather than approach the data with an existing theory.

Blackbox functions as a global dataset, but can also be used as a
data collection platform for local studies by adding an identifying
tag for a local population. So far, only one study [2] has made use
of this possibility, and respondents ranked it as the least important
feature. It is interesting that respondents generally disliked the
lack of contextual and demographic information about users in
the dataset, but did not seem to contemplate performing local data
collection using Blackbox, which would allow them to collect such
data for participants. It seems that the scale and prior availability
of the data is the most important feature, and worth trading-off
against the lack of context.

In our mapping study, we found two replication papers [2, 18].
Two out of eighteen papers is not a high proportion, but given
that Kaijanaho [19] previously found only three replications in an
analysis of forty years of research, it can be viewed as a promising
amount.
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6 CONCLUSIONS
The Blackbox dataset provided the basis of eighteen publications
by ten research groups in its first five years. Some researchers who
used it stated that their research could not have been carried out
without Blackbox, several more said it would have been difficult to
find other data, and some stated that they could not otherwise have
had access to this scale of data. Thus we believe the project can be
viewed as a success and a positive asset in computing education
and software engineering research. It is also a vindication of the
original decision to make the Blackbox open to other researchers:
had its use been constrained only to the Blackbox creators, some
of this research would not have been possible. Two of the Blackbox
papers have been replications, which is encouraging in light of the
so-called replication crisis in Psychology and other fields [10].

Researchers have found that analysis with Blackbox can be chal-
lenging. Some of these challenges are inherent: the scale of the data
means that manual analysis is of limited utility, and that analysis
software and database queries may need optimisation to be prac-
tical. The way that the data is collected from BlueJ users means
that contextual data (such as demographic data and especially data
about the user’s current task) is not available, which hampers some
analyses. Some of the challenges relate to trade-offs in the data:
Blackbox records a wide variety of data to support multiple differ-
ent use cases, but this in turn makes each individual researcher’s
use of the data more complicated. Finally, other challenges may be
solvable by improving the analysis tools or tutorials available, espe-
cially to support common use cases such as analysis of sequences
of code snapshots punctuated by compiler error data.

We believe that large data collection projects and datasets have
a useful place in programming research. Blackbox demonstrates
that it is possible to create a dataset decoupled from a specific pur-
pose, and for it to provide the basis of differing studies by multiple
research groups. Careful sharing of this data has enabled more
research to proceed and achieve more generalisable results than
otherwise would have been possible. There is, however, a careful
trade-off to be made between, on the one hand, richer detail and
higher granularity in the data, which may notionally enable more
types of research, versus, on the other hand, a simpler data schema
which makes the data easier to work with. More data may be better,
but more detail not necessarily so. Additionally, there remain con-
cerns about the “gravitational pull” of such datasets. Researchers
view the easy availability of large-scale data as a positive, but there
may be an opportunity cost of not investigating important ques-
tions which can only be answered with different, perhaps smaller
datasets.

An interesting question is whether large-scale data only pro-
duces a quantitative shift in research results. Computing education
does not really have a central model of the programming process
(the plan-composition model is perhaps the most comprehensive at-
tempt [12, 31]) or many reliable metrics (Jadud’s error quotient [17]
being one of the few). Thus, the way that analyses conducted on
Blackbox tend to focus on concrete observables such as compiler er-
rors, rather than the complete programming process, is completely
in line with previous research. There are no signs that having larger
scale data will by itself produce a qualitative shift in the types of
analysis performed on student code.

For better or for worse, analysis of large-scale data like Blackbox
must be done using a program. This adds the side benefits of speci-
ficity and rigour: a program is an unambiguous and reproducible
way of conducting analysis. However, it also excludes the possibil-
ity of rich, nuanced qualitative analyses. The work of McCall and
Kölling [23] indicated that human categorisation of errors, which
does not scale, was a more promising route than simpler automatic
classification – although the work did use a subset of the Blackbox
data as part of its source data. This would seem to be a good model
for the use of large-scale data in computing education research:
not as a panacea, but as part of the classic observe-hypothesise-
experiment cycle, where large-scale datasets can aid in parts of
the observe and experiment phases, sometimes in tandem with
additional small-scale local observations or analyses.

6.1 Future work
There are some aspects of the Blackbox dataset which have yet to
be explored. This may simply be data that is of no use to anyone,
but we believe that there are interesting studies which could still be
conducted. For example, information on which exceptions students
encounter may be interesting to explore, as would be the interplay
between code execution and code editing, or test frequency and
correctness. Several studies we found consider student behaviour
after receiving a compiler error, but not after receiving a runtime
output. We also believe that there may be interesting uses of the
data involving the local data collection mechanism, which allows
the addition of demographic data. Our survey, however, suggests
that most researchers to date do not consider this to be a feature of
particular interest.

The Blackbox project has collected nearly five years of data.
BlueJ has so far maintained its popularity, and the Blackbox server
is still running; there is no obvious reason why the project cannot
continue for another five years. Recently, in August 2017, the first
major changes weremade to the database schema since the project’s
inception. These were necessary to accommodate the changes in-
troduced in the release of BlueJ 4: support for recording Stride [21]
data was added, as well as changes reflecting BlueJ’s move to con-
tinuous background error checking. Blackbox remains available for
interested researchers who wish to access the data.
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