Panel: Future Directions of Block-based Programming

Neil C. C. Brown
School of Computing
University of Kent
Canterbury, CT2 7NF

UK
nccb@kent.ac.uk

Jens Mdnig
Communications Design
Group (CDG), SAP Labs

1025 Westwood Blvd.

jens@moenig.org

1. SUMMARY (DAVID WEINTROP)

Blocks-based programming is becoming the way that learn-
ers are being introduced to programming and computer sci-
ence. Led by the popularity of tools like Scratch, Alice, and
Code.org’s Hour of Code activities, many new programming
environments and initiatives are employing the blocks-based
modality. This trend can be seen in the growing number of
classroom computer science curricula incorporating blocks-
based environments into their materials. Despite this rise in
use, many open questions remain surrounding blocks-based
programming. In this panel, we discuss the current state
of blocks-based programming environments, review what we
know about learning with blocks-based tools, and look to the
future, discussing what form next-generation blocks-based,
or blocks-inspired, programming environments might take.

Research looking at blocks-based programming is reveal-
ing that modality matters: that the representations used
to present programming concepts affect learners’ conceptual
understanding [6], programming practices [3], and percep-
tions of programming and computer science [5]. This panel
brings together leading designers and researchers looking
to advance graphical, blocks-based programming through
new, innovate designs. The panel will open with a review
of current research literature on learning with blocks-based
programming and then continue with presentations of three
recently designed blocks-based programming environments
(Greenfoot 3, GP, Pencil Code), each of which look to push
the boundaries of the approach in different directions. These
short presentations will frame the discussion of pertinent
questions facing designers and educators who use blocks-
based programming environments. As part of the panel dis-
cussion, the following questions with be explored:

Why do blocks-based programming environments
work? Blocks-based tools weave together a myriad of fea-
tures to produce accessible, engaging programming environ-
ments. The color and shape of commands, the organization
and easily navigable way blocks are displayed, and the drag-
and-drop composition mechanism all contribute to support-
ing novices in writing successful programs. Drawing on re-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE ’16 March 02-05, 2016, Memphis, TN, USA
(© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3685-7/16/03.

DOL: http://dx.doi.org/10.1145/2839509.2844661

Los Angeles, CA, USA 90024

Anthony Bau
Phillips Exeter

David Weintrop
(moderator)

Q?_Iadﬁgk' Northwestern University
, Evanston, IL, USA 60208
dab1998@ dweintrop@

gmail.com u.northwestern.edu

search and our own experiences, we discuss why the current
generation of blocks-based tools look the way they do, and
what are the key features of successful block environments.

What are the challenges associated with designing
blocks-based editors? In the creation of a programming
environment, countless design decisions are made, including
aspects of the interface and layout, questions of language
design, and consideration of how the blocks-based program-
ming component will interact with the runtime environ-
ment. In answering this question, we discuss the tensions
and trade-offs inherent in creating blocks-based program-
ming environments, and discuss elusive features we have yet
to figure out how best to incorporate into blocks-based tools.

‘What are the challenges we face in bringing blocks-
based programming into the classroom? With this
question we explore technological, pedagogical, and percep-
tual challenges of teaching with blocks-based programming
in formal settings. This includes confronting the perception
that blocks are not “real” programming and other hurdles
towards adoption of blocks-based tools in formal contexts.

What are the pros and cons of blocks-based pro-
gramming (especially relative to text-based alterna-
tives)? Research is revealing that the blocks-based modal-
ity can support learners’ conceptual understanding, help
novices advance more quickly, and engage underrepresented
populations with computer science. At the same time, text
still retains some advantages over blocks. In addressing this
question we reflect on the current state of blocks-based envi-
ronments and discuss how we as designers, researchers, and
educators might address the current limitations.

What are the gaps between blocks- and text-based
programming? How can they be bridged by de-
sign or pedagogy? A major open question is if, and how,
concepts and practices learned in introductory blocks-based
environments transfer to more conventional text-based lan-
guages. Research has reported both successful and unsuc-
cessful transfer. With this question we explore the gaps that
exist between the two modalities and discuss potential de-
sign solutions to address them.

What is the future of blocks-based programming?
This final question looks to the future, thinking about what
blocks-based programming might look in the near and not-
so-near future. As part of this question we discuss the long-
term role of blocks-based programming and whether or not
we think blocks-based (or blocks-inspired) environments will
supplant text-based programming.

These questions, along with questions from the audience,
will be explored as part of this panel session.



2. NEIL BROWN (GREENFOOT 3)

Neil Brown, Michael Kolling and Amjad Altadmri are de-
signing the new Greenfoot 3 “frame-based” editor [1]. Frame-
based editing is intended to combine the best parts of block-
based programming and text-based programming. Frames
are very similar to blocks, but crucially, keyboard entry is
supported by use of a “frame cursor” which occupies the
space between frames and allows single keypress insertion of
new frames. The cursor also allows for easy selection and
manipulation of frames in a similar way to text. For exam-
ple, holding shift while moving the cursor creates a frame
selection, which can be cut/copied/pasted. This keyboard
support is accompanied by many further usability improve-
ments to better support intermediate and experienced users.

The frame-based language in Greenfoot 3 is named Stride.
Stride is very similar to Java, with a near-identical seman-
tic model, and allows full use of Java libraries. Where
most block based systems have a finite set of commands, all
of which are shown on a potentially overwhelming palette,
Stride has a single, generic “method call” frame which can
be used to call any Java method, without complicating the
set of available frames. A classic code completion interface
helps users select available methods.

Neil and his colleagues believe that blocks-based program-
ming, as enhanced in their frame-based programming, has
the potential to surpass text-based programming in terms of
usability — that by adding keyboard support and further im-
provements for program manipulation, readability and nav-
igation, it is possible to bring together the best of blocks-
and text-based programming into a single unified system.

3. JENS MONIG (GP AND SNAP!)

Jens Monig, John Maloney, and Yoshiki Ohshima are de-
veloping GP, a portable, extensible, general purpose blocks
programming language for casual programmers [4]. The GP
class library and programming environment are written in
GP itself, so all code can viewed, edited, and debugged as
blocks. So far, the GP developers have used conventional
text editors on the textual representation of GP code as a
way to bootstrap the system, but we hope to develop tech-
niques to allow us — and advanced GP users — to evolve and
extend the GP system using only blocks-based editing tools.

Blocks languages offer many advantages to the beginner
or “casual” programmer. They eliminate syntax issues, allow
the user to work with logical program chunks, provide affor-
dances such as drop-down menus, and leverage the fact that
recognition is easier than recall. However, as users gain ex-
perience and start creating larger programs, they encounter
two inconvenient properties of pure blocks languages: blocks
take up more screen real-estate than textual languages and
dragging blocks from a palette is slower than typing.

We will describe two techniques that address these prob-
lems in GP. The first technique, which addresses the screen-
real estate and code readability (and “skim-ability”) issues,
is to switch to an alternate block rendering style that re-
moves block outlines and colors, changes fonts, and shrinks
the vertical and horizontal spacing. The result looks and
reads like text (in the same amount of screen space), yet
retains the underlying structure and affordances of blocks.

The second technique explores ways to input and edit
blocks using only the keyboard. This effort was initially in-
spired by an interest in making GP accessible to users with

visual or physical impairments, but we quickly realized that
keyboard-based block editing benefits all GP users. Like
Greenfoot’s frame editor, GP’s keyboard block editor in-
troduces a “block input cursor” that can be moved around
using navigation keys. To insert a new block at the cursor,
the user starts typing any word that appears on the desired
block. As they type, the system shows a menu of the top
five matching blocks. It usually takes just a few keystrokes
to select a given block from GP’s current palette of approx-
imately 250 blocks. Keyboard entry avoids the overhead of
selecting a category in the blocks palette, finding the block
in that category, dragging it out, and dropping it into the
correct location — thus saving a great deal of time.

4. ANTHONY BAU (PENCIL CODE)

Anthony Bau is developing Droplet, a new block editor
used in David Bau’s Pencil Code environment and Code.org’s
Applab. Droplet is a block-based editor that can load and
edit code in text languages. This provides many of the ad-
vantages of blocks (a palette, less typing, assistance with
syntax, and a visualization of the program) while allowing
students to use text language runtimes and participate in
text language communities.

Currently, block languages generally fall short of text lan-
guages in expressiveness and in the maturity of their devel-
oper communities. There is also a disconnect in students’
minds between block programming and their perception of
“real” programming [2]. These problems could be solved
by creating more advanced block languages; however, they
could also be solved by bringing the benefits of block lan-
guages to existing text languages. Droplet is designed to
do the latter, by allowing students to work in blocks with
real-world text programs in mainstream languages, and to
switch between blocks and text at any time.

Even as visual languages improve, Anthony believes that
text languages will always be a staple of computer science
education. Block editing for text programs, like Droplet, will
be a way for students and professionals to take advantage of
the simplicity of blocks while learning to code in text.

5. REFERENCES

[1] M. Kolling, N. C. C. Brown, and A. Altadmri.
Frame-based editing: Easing the transition from blocks
to text-based programming. In WiPSCFE ’15, pages
29-38, 2015.

[2] C. M. Lewis. How programming environment shapes
perception, learning and goals: Logo vs. scratch. In
SIGCSE 10, pages 346-350, 2010.

[3] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.
Habits of programming in scratch. In ITiCSE 11,
pages 168-172, 2011.

[4] J. Monig, Y. Ohshima, and J. Maloney. Blocks at your
fingertips: Blurring the line between blocks and text in
GP. In Blocks and Beyond workshop, 2015.

[5] D. Weintrop and U. Wilensky. To block or not to block,
that is the question: Students’ perceptions of
blocks-based programming. In IDC ’15, pages 199-208,
2015.

[6] D. Weintrop and U. Wilensky. Using commutative
assessments to compare conceptual understanding in
blocks-based and text-based programs. In ICER ’15,
pages 101-110, 2015.



