Paper Session: Tools 1

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

Stride in Blue) - Computing for All in an Educational IDE

Michael Kélling Neil C. C. Brown
King’s College London King’s College London
London, UK London, UK
michael.kolling@kcl.ac.uk neil.c.c.brown@kecl.ac.uk
ABSTRACT

Block-based programming languages and environments have sev-
eral benefits for introductory programming courses, compared to
more traditional text-based languages. In particular, blocks remove
the burden of learning language syntax and dealing with syntax-
related errors. Many blocks-based environments are tightly focused
on developing graphical games, stories and simulations, while the
more general programming environments are typically text-based.
In this tool paper, we describe the incorporation of a Stride editor
within the Blue] programming environment. Stride is a frame-based
programming language, intended to combine the best of blocks and
text programming, usable both as a stepping stone towards text-
based languages and as a comprehensive language in its own right.
The incorporation of Stride into BlueJ brings some aspects of block
programming into a general purpose educational environment.

CCS CONCEPTS

« Social and professional topics — Computing education; «
General and reference — Design;

KEYWORDS
Blue]J; Stride; Frame-based Editing

ACM Reference Format:

Michael Kélling, Neil C. C. Brown, Hamza Hamza, and Davin McCall. 2019.
Stride in Blue] - Computing for All in an Educational IDE. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19), February 27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3287324.3287462

1 INTRODUCTION

The teaching of programming, as part of computer science edu-
cation, was long seen as a specialist skill relevant only to those
who were considering a career in a computing-related discipline,
or those with a special interest in the subject. As a result, program-
ming was taught in specialist courses, either in higher education
or in advanced, usually elective subjects in school.

In the last decade or so, computing has been increasingly viewed
as a subject relevant to all learners, as part of a general education.
Computer science — and with it, programming — is now often taught

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 19, February 27-March 2, 2019, Minneapolis, MN, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5890-3/19/02...$15.00
https://doi.org/10.1145/3287324.3287462

63

Hamza Hamza Davin McCall
King’s College London King’s College London
London, UK London, UK

hamza hamza@kcl.ac.uk davin.mccall@kcl.ac.uk

early in a school curriculum (in lower secondary school, or in
primary school) [11]. This development represents perhaps the
single most significant change in the teaching of programming
in this century so far, and it has significant ramifications for the
methods and tools that should be employed.

The trend towards teaching computing as a discipline for all,
as part of a general education, brings with it an expectation that
the content learned in this subject cover material that is generally
useful in many domains. Consequently, arcane details that are only
relevant to professional software developers working with specific
systems, which may have been acceptable as part of a specialist
programming course, are much harder to justify.

A common challenge in curriculum and tool design is, therefore,
the separation of fundamental concepts from accidental complexi-
ties. While the former should be exposed as clearly as possible, the
latter should be avoided as much as is practical.

In this paper, we discuss the design of a new version of a widely
used introductory program development environment, Blue], to
take account of this development. Blue] was initially designed to
allow development in the Java programming language. The use of
Java, a language designed for professional software engineers, is
defensible in specialist computer science courses, but much less
so in a generalist educational setting with younger learners. Its
sometimes arcane and error-prone syntax introduces a significant
amount of accidental complexity, mastery of which is hard to jus-
tify if the goal is an understanding of fundamental and generic
computing concepts.

As a result, we added support for a new, more suitable language
to Blue]J: a language called Stride [7]. Stride differs from traditional
text-based languages mostly in its program manipulation support,
provided by its frame-based editor. In this paper, we describe and
discuss the features of Stride, its integration into Blue], and the
benefits that result for general early programming education from
this design. A link to the full, downloadable system is provided at
the end of this paper.

2 A SHORT HISTORY OF BLUE]

Blue]J was initially designed for use at introductory university level.
It is, however, also widely used at schools, usually in elective com-
puter sciences courses in the last years of a school curriculum.

Blue] differs from mainstream Java development environments
in its interface and functionality. The interface emphasises program
structure, classes and objects. In its main window, BlueJ shows a
simplified UML diagram and a visualisation of objects, which can
be interactively created (Figure 1). Blue] has functionality specifi-
cally designed to aid the learning of object-oriented programming,
such as the ability to interactively invoke individual methods of
arbitrary objects, supply parameters, observe return values, and
inspect object state.

https://doi.org/10.1145/3287324.3287462
https://doi.org/10.1145/3287324.3287462

Paper Session: Tools 1

ece BlueJ: zuul

New Class...

—

Compile

[Command | [|
> l< f

. i .

| e ‘ | [Femerectr |
\—1 T R

Wizard Monster

jamel: iizard1:
‘Command getCommand()

parser1 : Parser void showCommands() 2

 EEEEEE—— »
Inspect

Remove

Figure 1: The main window of Blue], showing the class di-
agram and three objects on the object bench. Individual
method can be invoked on objects via a context menu.

The main interface of the environment is significantly simpler
and easier to learn to master than that of professional IDEs. Blue]
is, however, not a subset or cut-down version of a standard IDE:
its aim is not to offer fewer features but to offer different features.
Many of the educationally important interaction features are not
available in other IDEs.

While Blue]J’s original functionality provided significant inno-
vation in IDE design and interaction, the programming language
supported was standard Java. In the early versions of Blue], the
editor for program entry and manipulation was a standard text
editor, not significantly different from many other editors in use in
programming systems.

Blue] 3.0, released in 2010, introduced a new editor that sup-
ported scope highlighting (Figure 2). This functionality addressed
one of the most common programming problems for beginners: the
management of nested scopes. Beginning programmers often did
not maintain consistent indentation and struggled with balancing
the scope-defining brackets. Missing or surplus brackets were com-
mon and hard to diagnose. Auto-indentation and scope highlight-
ing made these kinds of errors more obvious: The editor provides
dynamic, real-time background colouring which makes spotting
unbalanced brackets easier. It also aids in general readability of the
code. The program manipulation, however, is character-based, and
scope highlighting does little to prevent errors being made in the
first place.

The overall abstractions provided via the main Blue] interface
worked well to illustrate important concepts, even for generalist
programming courses with younger learners. The Java language,
however, and particularly the text-based editor, introduced a signif-
icant amount of unnecessary complexity that resulted in frequent
problems, usually with small-scale syntax issues. Spending time
fixing such errors has little benefit for the understanding of funda-
mental programming principles.

64

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

o0 e CommandWords - zuul

Compile cut Copy Paste || Find.. || Close Source Code -

3 ~

Jax
* Check whether a given String is a valid command word.
* @return true if it is, false if it isn't.

*/
public boolean isCommand(String aString)

for(int i = 8; i < validCommands.length; i++) {
if(validCommands[i].equals(aString))
return true;

¥
return false;
Iex
* Print all valid commands to System.out.
*/
public void showAll()
{

for(String command: validCommands) {
System.out.print(command + " ');

¥
System.out.printin();
¥
}

Class compiled - no syntax errors

Figure 2: The Blue]J Java editor with scope highlighting, pro-
viding dynamic background colouring.

3 THE RISE OF BLOCKS

When programming teaching was considered for younger audi-
ences, including children under ten years old, text-based systems
were not feasible. Instead, block-based languages, such as Scratch
[8] became popular, which can be used at that age group.

Block-based languages introduced a number of important in-
novations that provide significant benefits for younger learners:
Syntax errors were largely impossible to make, program statements
were more readable due to labelling that is closer to natural lan-
guage, and statements were discoverable by being presented on a
block palette for experimentation and discovery.

Most importantly for our discussion: block-based languages re-
moved much of the accidental complexity of dealing with character-
based syntax and allowed learners and teachers to concentrate on
the underlying computational concepts.

4 FROM BLOCKS TO TEXT

While block-based languages reduce or remove many potential
syntax-related stumbling blocks that might obstruct the initial
progress of a novice programmer, and are well-suited to younger
programmers, they have some drawbacks in relation to the viscosity
of the editing process: small code fragments which may be simple
in appearance and function require a non-trivial amount of user
action to create and place correctly, as each block must be dragged
in from the palette. This quickly becomes a restrictive factor in the
ability of the learner to create larger programs.

An additional limitation is inherent in learners’ perception of
the system: students may perceive a block-based language as a “toy”
language [9], not suitable for real-world programming. This may
affect their motivation and impact their desire to learn.

To alleviate the eventual frustration with block-based program-
ming, a curriculum must at some point transition to a more tradi-
tional language and environment. In schools with a full computer
science curriculum, such as those in England, this transition from

Paper Session: Tools 1

blocks to a text-based environment typically occurs between school
years 7 and 9 (age 12 to 14). However, this transition is not without
its difficulties, as students encounter a raft of potential errors and
pitfalls that were not possible in a purely block-based environment.
Previous work [6] has identified a number of significant challenges
that students face:

(1) Reduced readability due to terser and more punctuation-
heavy syntax.

(2) The necessity of memorising commands rather than select-
ing them from a palette, and of memorising syntactical struc-
ture.

(3) The increased need for typing and spelling skills.

(4) An increased number of available commands.

(5) The need to match method call syntax with method defini-
tions residing elsewhere in the code.

(6) Understanding how syntactical elements are used to group
compound statements and determine lexical scope.

(7) More complex type systems.

(8) More complex and more technical error messages.

(9) Managing manual layout, in particular indentation.

(10) A potentially different programming paradigm.

The significant set of issues illustrates the challenge of transi-
tioning from a block-based to a text-based programming language.
This leads us to pose two questions:

(1) How can we better support learners in the transition from
block-based to text-based programming?

(2) Can we apply any aspects of the block-based approach to
improve editors for more comprehensive, general program-
ming languages? Although the editing viscosity can make
block-based programming unattractive for larger projects,
it does also provide some clear advantages. Some of these
advantages might also be provided by a hybrid approach that
lies somewhere between fully block-based and text-based
programming,.

In the following section, we introduce Stride, a programming
language and corresponding editor designed around frame-based
editing, a new editing paradigm which incorporates aspects of
both block- and text-based programming. Stride both provides an
intermediate transitional path for learners, and serves as an example
to show that a comprehensive programming language which is
suitable for larger and more complex projects can benefit from the
ideas of block-based programming editors.

5 STRIDE

Stride is a Java-like programming language manipulated in a frame-
based programming editor. Statements and other structural ele-
ments in the Stride language are represented in its editor as frames,
coloured nested boxes that can be directly manipulated by the user
(Figure 3). Frames are first-class interface elements: they can be
inserted and deleted with a single keypress, or dragged and dropped
into different location with the mouse. A context menu for common
operations is available for all frames.

Frames are always present in their entirety: They are inserted
and deleted in atomic operations, either with a single-key keyboard
command, or by selection with the mouse from a palette (see below).
Structurally incomplete statements, such as if-statements with a

65

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

00 CommandWords - zuul

CommandWords X

AV
public CommandWords()

nothing to do at the moment...
Methods
Check whether a given String is a valid command word. @return true if it is, false if it isn't

public boolean isCommand (String aString)
var inti =0
while (i <validCommands.length)
if (validCommands(i] .equals(aString))
return true

icitl
if we get here, the string was not found in the commands
return false

Print all valid commands to System.out
public void showAll()

for each (String command in validCommands)
System.out.print(command + *)

System.out.printin()

Figure 3: The Stride editor. Statements are represented by
frames with a different background colour.

text slot
frame slot

DescNbe your method here...

public v§id act()
if (|

Figure 4: A frame for an if-statement with two empty slots:
a text-slot for the condition, and a frame-slot for the body.

missing closing bracket, cannot exist, thus avoiding a large class of
common syntax errors.

Frames, when inserted, may contain slots — holes to be filled to
complete the statement. Slots are presented with white background,
indicating an incomplete frame (Figure 4). Two types of slots exist:
text slots for the insertion of expressions, and frame slots which
hold nested frames.

Stride can be written and manipulated entirely with the keyboard.
In contrast to block-based systems, the frame editor always displays
a cursor to mark the editing locus. When the cursor is in a frame
slot, a frame cursor is displayed that allows the entry of further
frames. Focusing a text slot displays a text cursor that allows semi-
structured text entry (Figure 5). Thus, editing, while exhibiting
some properties similar to block-based systems, is quicker and
more efficient than block-based systems which rely entirely on
mouse interaction for manipulation.

While frames at the statement level automatically avoid many
structural syntax errors, expressions and identifiers are not repre-
sented by frames. Here, text entry provides input significantly faster
and more flexible than in block systems. Some structure is enforced
in these text slots: Entry of parentheses, for example, is always in
pairs. Entering or deleting one parenthesis will automatically enter

Paper Session: Tools 1

Do something

private void foo() Do something.

—
private void foo()

| 0

Figure 5: The two cursors for editing operation: the frame
cursor (left) and the text cursor (right).

Describe your method here...

public type (para oe paramName, paramType paramName)

Figure 6: Frame slots are presented with prompts that pro-
vide information about the required elements.

or delete its matching counterpart. No unbalanced brackets can
ever exist.

Semi-structured text entry represents a compromise between
flexibility and error avoidance: It allows some syntax errors to be
made in return for more flexible and faster program manipulation.
Thus, Stride’s syntax error characteristics sit between those of
block-based and text-based systems: It avoids some common syntax
errors, leading to fewer errors than in text systems, but allows
others which are not possible in block-based systems.

Semantically, Stride is very similar to Java, with only minor dif-
ferences in language constructs and an identical object model and
type system. Most importantly, it is interoperable with Java, allow-
ing full use of the standard Java libraries. Thus, the full functionality
of the Java ecosystem is available. In fact, Stride and Java classes
can be used side-by-side in the same Blue] project.

A more detailed description of the features of Stride and its frame
based editor is presented elsewhere [7].

6 REDUCING COMPLEXITY

Stride’s frame editor provides several features that reduce cognitive
load for novice programmers, avoid the need to memorise unneces-
sary detail and aid the transition from block-based programming
systems.

6.1 Code structure

The editor provides an overall template for the class definition, with
clearly labelled areas for fields, constructors and methods. These
program elements, as well as statements, can only be inserted where
they are syntactically valid.

Frames, when they are dragged, can only be dropped at syntacti-
cally valid places in the source code. Thus, structurally valid code
is maintained at all times. The atomic insertion and manipulation
of frames also ensures that detailed statement syntax, such as the
punctuation required for a for-loop, does not need to be memorised
or typed by the novice learner. Both the requirement of memori-
sation of syntax and the requirement of accurate typing typically
present barriers for young learners in text-based systems.

66

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

Parameter type: boolean

Description: If true, include diagonal steps.

getNeighbours(o s Cls)

Figure 7: Parameter slots show formal parameter names; ad-
ditional information is displayed on demand.

Describe your method here...

pr ()
private <
protected

Figure 8: Frame slots are presented with prompts that pro-
vide information about the required elements.

6.2 Prompts and help

When compound frames are created, prompt texts in empty slots
provide information about the program element expected (Figure 6).
These prompts provide valuable help to beginners who may not
remember the syntactical structure of a given statement.

Other prompt texts remain useful even after statement structures
have become familiar. In method-call frames, for example, entering
a valid method name automatically creates slots for each expected
parameter with prompt texts displaying the parameter name. Hov-
ering over the parameter slots with the mouse displays additional
information in a popup, including the expected parameter type
and a help text (Figure 7). These mechanisms make the available
information much more visible at the point of insertion and reduce
cognitive load for the learner.

6.3 Restricted entry

Some type of slots only allow a small number of possible values; in
these cases entry is as a selection from a valid value set (Figure 8).
Values in these selection slots can be typed, with completions of
the typed prefix displayed and offered for selection. Beginners can
inspect the full set of available choices.

6.4 Improved error display

Errors in Stride are displayed as red underlines in the program
code. Focusing on the error location with the mouse or text cursor
displays the error message, and may offer possible fixes (Figure 9).
If a fix is offered, it can be selected from the popup to be enacted
automatically.

Because of the enforced statement structure of the program text,
error messages are generally more accurate than in freeform text
editors. The error location can always be correctly attributed to
a specific slot. Situations typical in text-based systems, where an
error is reported far from its actual cause, cannot arise in Stride.

Paper Session: Tools 1

var int births < breed()

var LocationfUENEREIERERELENINS
if (loc != nul EHEEE SRS

getX() , getv())

var Fox newFox < new Fox(false)
getField () .addObject (newFox, loc.getX() , loc.getY())

Figure 9: Errors may be followed by suggested fixes, which
can be selected to enact the fix.

4 little-crab - Stride

Commands

v
() call method

This method is called whenever

public void act() overrides method in Actor () Assignment -
checkKeyPress () Variable
ve (5 declaration var
lookForWorm () @ i "
Check whether a control key on the keyboard has been pressed. For-eachloop for gach (va
Ifithas, r ordingly
public void checkKeyPress() Wiita iz while (
if (Greenfoot .isKeyDown (“left”)) Return Totum
turn (-4)
o = = 7)c t
if (Greenfoot .isKeyDown (“right”)) ommen
turn (4) Blank
Switch i
Check whether we have stumbled upon a worm © swch (
Ifwe have, eat it. If not, do nothing. If we have eaten eight worms, we win Trylcatch -
public void lookForWorm()
= 5 Break
if (isTouching (Worm .class)) (©) Brea break
removeTouching (Worm .class) _— .

Greenfoot . playSound (“slurp.wav ”)

Figure 10: The right-hand side cheat sheet shows the avail-
able frames that can be inserted at the current frame cursor
position.

6.5 The ‘Cheat Sheet’

To aid in the memorisation of available statements and their key
commands, a selection palette — named the “Cheat Sheet” - can op-
tionally be displayed at the right-hand side of the editor (Figure 10).
This cheat sheet always displays the complete set of available frame
options, together with their keyboard shortcuts. A mouse click on
a command in the cheat sheet inserts the corresponding frame in
the code (as does, of course, activation of its command key). The
cheat sheet is context sensitive: it displays only language elements
that are syntactically valid at the current cursor position.

The cheat sheet provides an aid for recognition over recall, as
the typical block palettes do in block-based systems. In contrast
to block systems, not all method calls are listed individually (but
rather, “Call method” is listed as a single frame type). As a result, the
number of choices at any time is limited, and all available frames
can easily be displayed. (The example shown in Figure 10 indeed
shows all available program statement types.)

Investigation and choice of individual methods is provided via
method call auto-completion functionality.

67

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

public void process (int ratio)
read=reaa(purTer)

height =getWorld() . getHeight()
x =Greenfoot. getRandomNumber(height)
y =Greenfoot. getRandomNumber(300)

if (Math. hypot(x-getX() , y-getY()) > 20)
setLocation(x, y)
teleported =true

setimage(“crab.png”)
a=a+1
add(42)
turn(5)
else
sb . append(“ (-) negative”)
if (a==5)
System. err. printin(“read attempt failed”)

System. err. print(“should not be negative”)

Figure 11: When code scrolls out of view, method headers
are pinned to the top of the editor window. Header text of
scopes that are not fully visible is displayed in the side bar
of the scope frame.

6.6 Visual aids

The move away from characters as the basic unit of representation
of program text opens the door for many options of visual program
presentation that adds additional useful information for program-
mers. Figure 11 shows two examples of this: When longer methods
scroll partially out of view, it is generally useful to still be able to
tell which method is currently displayed. Consequently, the Stride
editor pins the method header to the top of the window and scrolls
the method body underneath.

In similar fashion, when the header of long scope frames scrolls
out of view, the header text is displayed in the left indent area of
the frame.

Both these examples demonstrate how the move away from plain
text editors opens opportunities for better program display that
increases readability.

7 STRIDE IN BLUE]

Stride was originally implemented in the Greenfoot IDE [5], which
- like many block-based systems - is a development environment
with a restricted application domain: It is designed exclusively
for the development of two-dimensional graphical applications,
typically simple games or simulations. With the release of Blue]J
4.0, Stride is now available in Blue], a general-purpose IDE with
a generic, non-restricted application domain - alongside the pre-
existing Java editor.

The availability of Stride in Blue] brings frame-based editing to a
more general application domain that was previously covered only
by Java, and not typically addressed by block-based environments.

Paper Session: Tools 1

Typical BlueJ-based teaching examples include GUI programs us-
ing Swing or JavaFX, programs implementing or making use of
sophisticated data structures, applications connecting to databases
or networks, and many more. All of these examples can easily
be rewritten in Stride. In fact, Blue] includes an automatic Stride-
to-Java and Java-to-Stride conversion feature, which makes the
translation of existing teaching examples easy. The translation fea-
ture also helps students in the progression from Stride to writing
Java programs.

The availability of Stride in Blue] brings the advantages of frame-
based editing to general programming courses, and makes it feasible
to use Blue] in generalist courses aimed at all students, rather than
specialist electives. While the target user group of Blue]J previously
was learners from age 16 upwards, we now recommend use with
students from about 13 years old.

We believe Stride serves well as a first programming experience
at that age group, or as a follow-on system after gaining experi-
ence with block-based systems. When transitioning from block
systems, the problems listed in section 4 are reduced. Some of the
challenges remain and lead to new learning and insights (such as
an extended command set, a more powerful object model, a more
generic type system), while many of the incidental, purely syntactic
complications are avoided [6].

When Stride is used in general programming courses for all stu-
dents, its use serves two different purposes for two distinct user
groups. For learners who do not want to progress further in soft-
ware development, Stride can be the endpoint of programming
education. All meaningful programming concepts can be illustrated
with Stride, and the subsequent learning of specific text-based syn-
tax or professional development tools serves little purpose for a
generalist education.

For programmers who want to progress to more powerful sys-
tems, on the other hand, Stride serves as a well-working stepping
stone into fully text-based Java. The concepts learned in Stride
translate directly into traditional languages and environments, and
a Java-preview feature in the Stride editor helps in investigating
syntactic differences that remain.

This combination ensures that interested students can progress
to other systems smoothly, while those wanting to get an insight
into the concepts of programming in general are not distracted by
unnecessary syntactic problems.

8 EVALUATION

Prior to the addition of Stride, Blue] already contained support for
the Blackbox project [1], which tracks the programming activity of
opted-in Blue]J users. Blackbox has support for global data collection,
and for supporting local studies by tagging users of interest, with
access available to interested researchers. Support for tracking
Stride users has been added to Blackbox, which can thus be used
as an evaluation platform.

Currently, Stride use is low in BlueJ due to it being a recent
addition. We can examine whether users are using the keyboard
controls — a distinctive feature of Stride — or whether they are using
the mouse as they would in other blocks editors. Looking at the
data up to 2018-08-06 (all numbers to nearest 100), we find that
13,500 frame insertions were performed by clicking on the cheat

68

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

sheet, whereas 30,300 insertions were done using the keyboard
commands. Thus it seems that most users are taking advantage of
the keyboard commands to insert frames. Looking at the statistics
for frame manipulation, there were 800 paste operations and 1300
drag operations, suggesting that the ability to drag frames by mouse
remains a useful and popular way to manipulate code, and is used
more than the clipboard.

9 RELATED WORK

There are many existing purely text-based and purely block-based
programming languages, that we will not list here, as we are inter-
ested in hybrid approaches like Stride - in which there has been
increasing interest. Currently the closest system to Stride is GP,
a block-based system for general purpose programming [10]. GP
shares some aspects with Stride, such as the ability to edit block-like
syntax with the keyboard. The main difference is that GP retains
Scratch’s pattern of having a different customised block for each
environment capability (e.g. move, turn), which limits its use to
strongly restricted application domains, whereas Stride has a single
method-call frame which can be used to call any Java method.

Looking to the past, structure editors, such as Boxer [2] and
Barista [4], and older editors like GNOME [3], share various fea-
tures with our frame-based editor. Structure editors failed to gain
widespread adoption. We believe one reason for this was the poor
usability of older editors. For example, navigating a structured ex-
pression often used abstract syntax tree-based navigation, so that
to move in the expression “1 + 2” from the 1 to the plus, the user had
to press the up cursor key. This is logical in terms of internal syntax
trees, but to a novice programmer, it is counter-intuitive. (In Stride,
this is achieved by pressing the right cursor key). Another issue
is that many structure editors became structure editor generators,
as many programmers realised that it was possible to generate an
editor automatically from language grammar descriptions. Our ex-
perience with Stride suggests that many design decisions in editors
need to consider carefully the language grammar, rather than being
language-agnostic. Finally, previous structure editors enforced fixed
structure all the way down, as Scratch does. We believe that this is
too cumbersome for large program manipulation; our approach of
having structure at high-levels and free-form text at lower levels
is a more promising practical compromise. A fuller discussion of
prior related work is presented elsewhere [7].

10 CONCLUSIONS

A programming environment for beginners should minimise acci-
dental complexity. The main interface of BlueJ and the design of its
interaction facilities for easy compilation, execution and testing of
code have followed this principle for a long time.

Blue]’s reliance on standard text-based Java programming, how-
ever, still introduced a notable hurdle for beginners, especially
younger beginners. The text editor presented complexity for little
educational gain. With the addition of Stride, Blue] removes an-
other layer of complexity that enables novices to make fewer errors,
progress more smoothly and better concentrate on fundamental
programming concepts.

Download: Blue]J 4.x can be downloaded at www.bluej.org. Blue]
is free, open source and supports both Java and Stride.

www.bluej.org

Paper Session: Tools 1

REFERENCES

[1] Neil C. C. Brown, Michael Kélling, Davin McCall, and Tan Utting. 2014. Blackbox:

3

[4

=

=

A Large Scale Repository of Novice Programmers’ Activity. In Proceedings of
the 45th ACM Technical Symposium on Computer Science Education (SIGCSE ’14).
ACM, New York, NY, USA, 223-228. https://doi.org/10.1145/2538862.2538924
Andrea A diSessa. 1997. Twenty reasons why you should use Boxer (instead of
Logo). In Learning & Exploring with Logo: Proceedings of the Sixth European Logo
Conference. 7-27.

David B. Garlan and Philip L. Miller. 1984. GNOME: An Introductory Program-
ming Environment Based on a Family of Structure Editors. In Proceedings of
the First ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments (SDE 1). ACM, New York, NY, USA, 65-72.
https://doi.org/10.1145/800020.808250

Andrew J. Ko and Brad A. Myers. 2006. Barista: An Implementation Framework
for Enabling New Tools, Interaction Techniques and Views in Code Editors. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’06). ACM, New York, NY, USA, 387-396. https://doi.org/10.1145/1124772.1124831
Michael Kélling. 2010. The Greenfoot Programming Environment. Trans. Comput.
Educ. 10, 4, Article 14 (Nov. 2010), 21 pages. https://doi.org/10.1145/1868358.
1868361

69

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

[6] Michael Kolling, Neil C. C. Brown, and Amjad Altadmri. 2015. Frame-Based

[7

]

Editing: Easing the Transition from Blocks to Text-Based Programming. In Pro-
ceedings of the Workshop in Primary and Secondary Computing Education (WiPSCE
’15). ACM, New York, NY, USA, 29-38. https://doi.org/10.1145/2818314.2818331
Michael Kélling, Neil C. C. Brown, and Amjad Altadmri. 2017. Frame-Based
Editing. Visual Languages and Sentient Systems 3 (2017), 40-67.

[8] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-

mond. 2010. The Scratch Programming Language and Environment. Trans.
Comput. Educ. 10, 4, Article 16 (Nov. 2010), 15 pages. https://doi.org/10.1145/
1868358.1868363

[9] José Alfredo Martinez-Valdés, J. Angel Velazquez-Iturbide, and Raquel Hijon-

[10

[11

]

Neira. 2017. A (Relatively) Unsatisfactory Experience of Use of Scratch in CS1.
In Proceedings of the 5th International Conference on Technological Ecosystems for
Enhancing Multiculturality (TEEM 2017). ACM, New York, NY, USA, Article 8,
7 pages. https://doi.org/10.1145/3144826.3145356

Jens Monig, Yoshiki Ohshima, and John Maloney. 2015. Blocks at Your Fingertips:
Blurring the Line Between Blocks and Text in GP. In Proceedings of the 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond) (BLOCKS AND BEYOND ’15).
IEEE Computer Society, Washington, DC, USA, 51-53. https://doi.org/10.1109/
BLOCKS.2015.7369001

Informatics Europe & ACM Europe Working Group on Informatics Education.
2013. Informatics education: Europe cannot afford to miss the boat. Technical
Report. ACM Europe.

https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/800020.808250
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1145/1868358.1868361
https://doi.org/10.1145/1868358.1868361
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/3144826.3145356
https://doi.org/10.1109/BLOCKS.2015.7369001
https://doi.org/10.1109/BLOCKS.2015.7369001

	Abstract
	1 Introduction
	2 A SHORT HISTORY OF BLUEJ
	3 THE RISE OF BLOCKS
	4 FROM BLOCKS TO TEXT
	5 STRIDE
	6 REDUCING COMPLEXITY
	6.1 Code structure
	6.2 Prompts and help
	6.3 Restricted entry
	6.4 Improved error display
	6.5 The `Cheat Sheet'
	6.6 Visual aids

	7 STRIDE IN BLUEJ
	8 EVALUATION
	9 RELATED WORK
	10 CONCLUSIONS
	References

