
Communicating Process Architectures 2004
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

185

C++CSP Networked

Neil BROWN
QinetiQ, Malvern Technology Centre, St Andrews Road,

Malvern, Worcestershire, WR14 3PS, United Kingdom

neil@twistedsquare.com / ncbrown@QinetiQ.com

Abstract. C++CSP is a library for C++ enabling direct implementation of CSP con-
currency design. It provides an extended set of CSP primitives that follows the model
captured byoccam andJCSP, with an API similar to the latter. It runs on most plat-
forms, with efficient realisation for both Windows and Unix/Linux. It was released
under the open source Lesser GNU Public Licence in January, 2004. That version
supports only concurrency within a single machine. This paper details the develop-
ment of a network capability for the library and reports some benchmarks, which are
encouragingly fast. The design of C++CSP networking follows several of the deci-
sions made for theJCSP Networking Edition (e.g. naming and automatic multiplex-
ing, though not yet a Channel Name Service). Three further extensions to the library
(channel poisoning, factories and bundles) are also presented.

1 Background

Communicating Sequential Processes (CSP) [1, 2] is a concurrency model centred around
concurrently executing processes that communicate using channels. CSP channels are point-
to-point; processes communicate through writing or reading onchannel ends, rather than the
writer having the address of its intended reader. CSP communications are also synchronised.
When a channel communication takes place, both parties must engage. When a writer has
finished its communication, it knows that its reader has read its message (rather than asyn-
chronous communication, where the writer has no such information). Crucially, a process
knows that its internal state cannot be changed behind its back, by being updated through the
arrival of messages outside its control.

An advantage of CSP is that the processes do not have to know anything of the delivery
mechanism of the channels they are using. Provided that the channels follow CSP channel
semantics, their implementation details (e.g. routing) are irrelevant to the processes using
them. This means that the channels can be network transparent; two processes will func-
tion the same way whether they are communicating usinginternal (on the same machine)
channels or overnetworked(between machines) channels.

Due to the limited power of any single machine, distributed computing is an area of huge
interest to those involved in high performance computing. Network transparency allows a
properly-structured CSP application to run on one computer or on many networked comput-
ers in parallel, with little or no change to the program itself. This advantage is particularly
useful for problems that have a large variety of scale. For example, machine learning algo-
rithms can operate on data sets that have a huge range of sizes – the smaller data sets can be
learnt from using a single machine, but larger problems may require clusters of machines.

Networked computing is not just of interest with relation to high performance comput-
ing however. Any client/server application could benefit from the relationship being able to
“stretch” over a network with little code change. For example, a GUI client with a server



186 N.C.C. Brown / C++CSP Networked

backend could either run in a self contained application on one machine, or it could put the
backend on another machine, perhaps shared between many clients.

One year ago, C++CSP was introduced at this conference [3], and at the beginning of
this year was released under the Lesser GNU Public Licence [4]. It contained many useful
new features such as templated channels and stateful poisoning (see section 2.1), but initially
it had no built-in network support. During the intervening year network support has been
integrated into C++CSP, and other new features have been added. This paper describes this
work, the design decisions that were taken, justification for the decisions and the results that
have been achieved with the network component. This paper assumes some familiarity with
the basic concepts and API of the core C++CSP library.

2 New C++CSP Features

2.1 Non-poisonable Channel Ends

Stateful poisoning of channels is a feature of C++CSP whereby a process with an end of a
channel can poison that channel, causing all successive attempts to use the channel in any
form (apart from to poison it) by anyone to throw aPoisonException. However, allowing
all processes with a channel end to poison the channel is not always desirable. For example,
we may not wantanyonewith a writing end of an any-to-one channel to be able to poison it.
To this end, channels also now havenoPoisonReader andnoPoisonWriter functions that
provide channel ends that cannot be used to poison the channel (unlike the ends obtained from
thereader andwriter functions). Using this mechanism, processes can choose whether the
channel ends they pass to their subprocesses can be poisoned or not.

2.2 Channel Factories

When two or more processes function by communicating mostly with each other, it is com-
mon to create a parent process that simply creates these two processes and provides an in-
terface to them to the world, hiding the communications that exist solely between the child
processes. For example, there might be a process that handles requests to access some data,
and an interface process that provides this service to the world in a simple interface. These
two processes could then be packaged up into a single server process. A tough decision is
what sort of channel to have between the two internal processes. A one-to-one channel would
be in keeping with the standard CSP semantics but would make other requests block until the
data access process has finished with the request. A buffered channel may be desired instead;
but there are multiple types of buffering – various sizes of FIFO, an overwriting buffer, or an
infinite size FIFO.

The best solution would be to allow the channel policy to be specified. The channel
could not be passed into the constructor as channels themselves cannot be copy-constructed.
Pointers to channels could be passed but this constructor-parameter-per-channel approach
would not scale well if the policy needed to be specified for a large (or variable) number
of channels. Templating the process is possible but would not allow for the decision to be
flexibly made at run-time. A buffer type could be passed to the process but this eliminates
the possible speed-up from using unbuffered channels, and also does not allow for any future
types of channels that may have significantly altered semantics (C++CSP has been designed
to allow for such possible future additions). The solution chosen is to use channel “factories”.

A class factory (an OOP pattern) is an object that creates other objects. A channel factory
is a class that can be used to create channels. Functionality is provided through inheritance,



N.C.C. Brown / C++CSP Networked 187

and each channel it creates is guaranteed to have the same lifetime as the factory. This allows
channels to last for a long time, but also can make them last beyond the lifetime of their ends.
The syntax for the factory is as follows:

class SomeProcess : public CSProcess
{

ChannelFactory<int>* factory;
protected:

void run()
{

Chanin<int> readingEnd;
Chanout<int> writingEnd_NotPoisonable;
factory->one2One(&readingEnd,&writingEnd_NotPoisonable,

true,false);
}
... pass in factory through the constructor

};

Theone2One method of the channel factory takes the address of the two channel ends to
assign to, and also two parameters (with a default value oftrue) to specify whether the read-
ing and writing ends respectively should be poisonable (see the previous section). Channel
factories were also implemented inJCSP.net [5, 6].

2.3 Channel Bundles

Channel bundles are a concept introduced byKRoC [7, 8] (as “channel-types”). A channel
bundle is a collection of channelends. Bundling channels allows for easy representation
of an interface. For example a process might have two request channels of typestring,
and a reply channel for each – one of typeint and one of typevector<float>. There-
fore a channel bundle could be produced to represent this interface containing four items:
Chanin<string>, Chanout<int>, Chanin<string>, Chanout< vector<float> >. On
its own this would just be a simple struct-like data structure. Channel bundles are reversible
though, so the reverse structure ofChanout<string>, Chanin<int>, Chanout<string>,
Chanin< vector<float> > could be given to another process wanting to use the original
process. InKRoC, the bundles are used for mobile channels as follows:

CHAN TYPE MYTYPE
MOBILE RECORD

CHAN INT in?:
CHAN INT out!:
CHAN BOOL extra!:

:

MYTYPE? myin:
MYTYPE! myout:

myin, myout := MOBILE MYTYPE

To do the same in C++CSP:

typedef
Bundle< bundle::In<int>,bundle::Out<int>,bundle::Out<bool> >
MyType;



188 N.C.C. Brown / C++CSP Networked

One2OneChannel<int> a,b;
One2OneChannel<bool> c;

MyType::Normal myIn(a,b,c);
MyType::Reverse myOut(a,b,c);

The constructors of the two bundles can take the actual channels as arguments, and get
the channel ends appropriately, to make their use simpler and more elegant.

3 Networked C++CSP – Motivation

Unlike other programming methodologies, such as procedural object-oriented programming,
CSP is well-suited to utilising networks because it is naturally network-transparent. Provid-
ing that CSP semantics are preserved, CSP processes are able to operate over any transport
mechanism, whether it is a CSP kernel on a single machine, or a network between two ma-
chines. This is because CSP processes are perfectly encapsulated – there is no shared data
between processes. The only way processes can communicate with each other is through
recognised CSP primitives such as channels and also barriers and buckets. Barriers and
buckets can be built using channels, so for the purposes of this paper only channels will be
considered.

C++CSP’s University of Kent-based sister technologies,KRoC [7, 8, 9, 10] andJCSP
[11, 12] already have networked versions,KRoC.net [13, 14] andJCSP.net [5, 6] respec-
tively. They provide both a proof-of-concept for network-enabling CSP technologies, and
also a useful design reference. This allows C++CSP to continue its trend of learning from
KRoC andJCSP while also trying to enhance them where possible and appropriate.

4 Networked C++CSP – Aims

Before design work can be undertaken on the networked capability of C++CSP , the aims of
the project need to be clarified, to inform our decision-making.

The central goal is to enhance C++CSP by allowing two C++CSP machines1 to commu-
nicate with each other using channels via a network. The primary consideration is utilising
TCP/IP sockets for the underlying transport mechanism, as TCP/IP sockets are virtually ubiq-
uitous in modern networking.

The network channels should be easy to use, and should be interchangeable with other
channels as much as possible. That is, they should be useable in parallel communications,
alternatives, extended rendezvous[15] and so on wherever possible. They should be poison-
able, as other channels are. All these aims facilitate network-transparency, the aim being that
a process communicating over a network channel should notice no difference from commu-
nicating over a standard channel.

It would be easy to state that the network-enabled library should be efficient. There
are many measures of efficiency here however. Possible criteria include minimal network
latency, maximum data throughput, and minimal loss of speed to the processes the machine
is running locally. Which of these is more important than the others depends on the particular
application so wherever possible the balance between them should be configurable.

1In this paper, a machine is defined to be a C++CSP program. Hence two C++CSP machines can run on the
same physical machine.



N.C.C. Brown / C++CSP Networked 189

5 Networked C++CSP – Design

The design of the network enhancements to C++CSP consists of many different areas. It is
clear that a new component will be needed in the kernel to handle the new consideration of
network traffic. This will be referred to as the NET system. Its job is to be the interface
between the network and the C++CSP kernel. Its implementation is discussed in section
5.2. The network protocol for channel communications will also need to be decided on –
this is described in section 5.3. Finally, consideration needs to be given to the Application
Programming Interface (API) for network channels (section 5.1), and the associated issues to
do with naming and finding channels (section 5.1.2).

5.1 The Network Class Structure and API

5.1.1 Channel Creation

To create a one-to-one channel and its associated ends the following code can be used:

One2OneChannel<int> channel;
Chanout<int> writingEnd = channel.writer();
Chanin<int> readingEnd = channel.reader();

This is clearly unsuited to being used for network channels. A network channel is not
created entirely on one machine, it is inherently split between the two machines that it com-
municates between. Therefore allocating the channel as above is not the best solution.

Instead, each machine will allocate its own channel object, where the two channel objects
correspond to one actual channel. So one end will have the following code:

Net2OneChannel<int> networkChannel;
Chanin<int> readingEnd = networkChannel.reader();

The other end will have the corresponding code:

One2NetChannel<int> networkChannel;
Chanout<int> writingEnd = networkChannel.writer();

These two channels will not be connected as they are above. To correctly connect the two
channel objects, we need a shared identifier – a channel name.

5.1.2 Channel Names

Both KRoC.net and JCSP.net opted for using the concept of a “Channel Name Server”
(CNS) in their network components. With this system every networked machine took the
address of a CNS and queried it for the network address (e.g. IP address and port number) of
the machine that corresponded to the name of a channel. This is a similar concept to that of
the Domain Name Server (DNS) which is now ubiquitous on the internet.

C++CSP will probably also have this concept included in the near future, but currently
there is only a standard explicit connection syntax. A channel name is simply of the form
“[NetworkAddress[:PortNumber]/]ChannelName”. If the network address is not included,
the channel is allocated on the local machine. This means that other machines that con-
nect can request to be connected to this channel, but the channel will not immediately be
connected to another machine. At this point use of the channel will block indefinitely until
someone connects to it.



190 N.C.C. Brown / C++CSP Networked

If the machine name is included, then the name is effectively a request to connect to
a remote channel. The network address (either an IPv4 address or a DNS name) and port
number uniquely identify a machine on the network, and the channel name is the channel to
connect to on that remote machine. Channel names can contain any ASCII characters above
32, except the / character.

5.1.3 Accepter Channels

The methods described above allow for a single process to connect to a single remote network
channel. This will be fine for many scenarios, but will not work for situations where one
server process needs to be able to accept connections from a variable number of clients.

To solve this problem, C++CSP suppliesaccepterchannels – a concept similar to the
socketaccept() call. The idea behind accepter channels is that they have a channel name
as normal, but for each remote connection, instead of connecting it to the accepter channel,
a new channel is created. This mechanism is invisible to the remote process making the con-
nection – it does not know whether it connected to a normal channel or an accepter channel.
A suitable syntax for this might have been:

Net2OneChannelAccepter<int> accepter;
Net2OneChannel<int> channel = accepter.accept();

Theaccept() call above would of course block until a remote connection was made to
this machine. To better fit in with the rest of the library however it is best to make the accepter
channel a proper channel (of channels!) as follows:

Net2OneAccepterChannel<int> accepter;
Net2OneChannel<int> channel;
accepter.reader() >> channel;

There is one remaining issue with this implementation though. In any communication be-
tween a client and a server there will inevitably need to be communication in both directions
at some point. CSP channels are one-way however, so just by connecting as above, only one
way communication would be possible. There are various possible methods for establishing
the channel in the other direction.

A second accepter channel for the client to join would not work properly as it cannot
be guaranteed that they would join in the same order to match the connections on the two
accepter channels, i.e. it would be impossible to tell which connection on accepter channel
B was from the same client as one on accepter channel A.

The first channel accepted could be used to send the names of other channels to connect
to back to the client. So the client would receive an array of channel names to use, such
as “server/input0”, “server/output1”, but this would be a redundant channel after the con-
nections had all been made. Such an approach is valid, but for some purposes the problem
can be solved more efficiently by providing the address of the client to the server when the
connection is made, so that the server can connect back to the client. So for example the
client connects to the channel “server/ping”, the server gets the client address and connects
to “client/pong” (see Appendix A for an example of the use of accepter channels).

This mechanism is useful when only one client from a C++CSP machine will be con-
necting to the server, otherwise name conflicts prevent this mechanism being used. In future,
work could be done in the area of connecting entire batches of channels in a single connection
attempt.



N.C.C. Brown / C++CSP Networked 191

5.1.4 Channel Transparency

When the original C++CSP library was developed, a decision was taken to have channel
ends that provide a consistent API to the channels themselves. While this introduces an extra
virtual function call into every channel action, it was considered worthwhile to be able to
truly hide the channel type from the process using it. Every channel type uses the same
channel end objects, so these ends are all that processes communicating over a channel see.
It is up to the parent process to choose the channel type, and pass the channel ends to its child
processes appropriately.

At the time of development of the original library this allowed for buffered channels to be
used seamlessly in place of normal channels, but with the advent of the networked component
of C++CSP, it also allows network channels to be used in place of normal channels.

5.1.5 Data Serialisation and Conversion

Sending data over a network is often not as simple as copying the bytes between two net-
worked machines. A major problem in C++ is that variables are often stored as pointers,
references, or complex data structures containing these items. Clearly a pointer is only valid
on the machine that it is being used; sending it over the network makes no sense. Another
consideration for some systems might be the endianness of the networked machines – if an
integer value is to be sent between a little-endian machine and a big-endian machine, it will
need to be converted.

The solution to these issues in the networked C++CSP API is to provide a default be-
haviour for transmitting items across the network (simply copying the bytes), but to al-
low (and indeed encourage and where possible require) the user to override this. A class,
NetConverter is provided:

template <typename DATA_TYPE>
class NetConverter
{
public:

std::pair<const void*,unsigned int> toNet(
const DATA_TYPE* data);

unsigned int fromNet(
DATA_TYPE* data,std::pair<const void*,unsigned int> pr);

};

ThetoNet method converts local data (thedata parameter) into raw bytes for sending
over the network (the return pair of a pointer to the data, and its size). ThefromNet method
converts raw bytes (thepr parameter above) back into local data (thedata parameter) and
returns the amount of bytes it had taken from the buffer. The default converter simply uses
memcpy to perform the conversion. This is suitable for “plain old data” types but not for
others, so the user is encouraged to provide their own specialisation of the class to handle the
conversion.

There are converters supplied for many STL containers (such asstring, vector, map)
but these are implemented in the safest manner; they convert each data object individually.
This is the correct decision for, say,vector< map< int,ComplexDataStructure > > but
for vector<float> where there may be millions offloats in the array, it is very inefficient.
Therefore if the user is going to be sending such structures, they can (and should) provide a
converter for these.

Unfortunately such optimisations cannot be determined by the library itself due to the na-
ture of C++ (and its lack of reflection). The library would explicitly have to supply converters
for all situations where a simpler converter would be sensible, and this is not feasible, so it is



192 N.C.C. Brown / C++CSP Networked

left to the user of the library. Also, the optimisation may be unwise. For example to convert a
vector<int> may require converting eachint individually to change its endianness, so the
decision is left to the user.

5.2 The NET System

There are a number of options to consider for how the NET system might interact with the
network and the local C++CSP machine. It could use either blocking or non-blocking sock-
ets. Non-blocking sockets would allow the system to avoid making a blocking call, a be-
haviour that has always been strictly avoided in C++CSP (since blocking would stop the
execution ofall C++CSP processes). However, the behaviour of non-blocking sockets varies
a lot between different Unix2-clones [16], let alone between them and Windows3. This, com-
bined with the messiness of asynchronous notifications that arise from using non-blocking
sockets, means that in fact blocking sockets are the better option, due to their simplicity and
portability. Blocking on these sockets can actually be avoided by using theselect() call to
check a socket’s status before making any send or receive calls.

The NET code can either be in the same thread as the C++CSP machine, or in its own
thread. Having it in its own thread seems like the best way to reduce the slow-down effects of
checking the network on the main C++CSP processes. It also appeals to the accepted wisdom
of having your network code in a separate thread (for example, [17]). This would also allow
properly blocking calls to be made without worry of it slowing down the main system.

Initially, the NET system was implemented in a separate thread to the normal C++CSP
system. However, it became apparent that communication between the two threads (and all
the associated synchronisation) incurred almost as much slow-down as checking the network
did. Therefore it seemed that checking the network in the same thread would minimise the
network latency without making any difference to the slow-down in the normal system. This
claim is explored in a benchmark later on in section 7.2.

5.3 The Protocol

The NET protocol is used between two C++CSP machines. It needs to support the full range
of C++CSP (one-to-one, unbuffered) channel semantics. This includes normal communica-
tions, parallel communications, extended inputs, alternatives, and poisoning. It must also
support making connections to channels (including the previously described accepter chan-
nels), and error conditions.

5.4 Semantics

The NET system ensures that it is invisible to processes at the two ends of a networked
channel by preserving channel semantics. The NET system does not act like a buffer – it
transparently forwards the data across the network, with no change to the synchronisation
semantics of the application running on top of it.

5.4.1 Connections

The NET system will multiplex the channels that are connected between two machines over
a single socket. No matter how many channels there are between two C++CSP machines,

2UNIX is a registered trademark of The Open Group
3Windows is a registered trademark of Microsoft Corporation



N.C.C. Brown / C++CSP Networked 193

there will only be one actual socket connected between them. This saves the overheads of
checking many sockets, but will not affect the data throughput of the channels.

5.4.2 Communication

The simplest protocol for channel communication would be one message per channel com-
munication (from writer to reader). However treating the message being sent as the end of
the communication for the writer would allow the writer to continue even if the reader had
not read from the channel – a clear violation of CSP synchronised channel communication.
The solution is for the reader to send an acknowledgement when the network channel has
been read. This simple system allows for all the communication types described above:

• normal communication: the writer sends a message with the contents of the communi-
cation and then blocks/freezes. The NET system of the reading machine recieves the
message and feeds it into the channel. The reader (who may have been waiting, or may
arrive at the channel afterwards) then reads the message; the NET system then sends
an acknowledgement, which unblocks the writer.

• extended rendezvous: the extended rendezvous is a communication where the writer
sends a channel communication, and the reader receives it but does not complete the
communication (i.e. free the blocked writer) until it has processed the information in
some way. This is simple to achieve in the NET system, which simply does not send
back its acknowledgement until the reader indicates that the rendezvous is complete.

• alternatives: ALTing over a network channel involves placing a “hook” for notification
for when a message arrives for the network channel, which can then be used by a guard
in anALT.

• parallel communication: performing communications in parallel in C++CSP consists
of two phases. The first involves setting up all the communications that are to be
performed and the second is suspending the process until all have been completed.
So for a parallel output, the writer simply sends the message with the contents of the
communication (as in the normal communication) during the setting up phase, and the
communication is deemed complete when the acknowledgement is recieved from each
reader. A parallel input works similarly, completing when all inputs have arrived.

5.4.3 Channel Identification

It has already been specified that channels will have a name that can be used to make the
channel identifiable and unique (within a single machine). So one possibility for identifying
the destination channel when a message is sent down the socket would be to provide the
channel name. However, C++CSP does not currently impose a limit on the length of channel
names, so descriptive names (which should be encouraged to prevent conflicts) would impose
a performance penalty for communication. Instead, each end of a networked channel is given
a 32-bitchannel ID, unique within each machine.

5.4.4 Messages

Every message passed between NET systems will take the form of a triple; the channel ID, a
size field, and then a stream of data (of that size, except for special messages). The channel
ID will always be the ID on the machine to which the message is headed, regardless of the



194 N.C.C. Brown / C++CSP Networked

stage of the communication. So a simple communication will put the channel ID on the
destinationmachine in the ID field, the size of the data in the size field, and then the data.
The receiving machine will then reply (when the communication has been completed) with
a message containing the ID of the channel on the source machine, with a special value
NetAckType in the size field, and no data.

Each machine maintains a lookup table containing the ID of each channel on the remote
machine it is connected to. This way each machine knows which ID to send messages back
to on the channel, removing the need to send both a destination and source channel ID with
each message. This helps conserve bandwidth.

When a channel is poisoned, a notification is sent to the other end. A poison notification is
similar to a reply message – it contains the channel ID (as always, for the message destination
end), a special valueNetPoisonType in the size field, and no data.

The other message types are the negotiations involved in connecting two ends of a net-
work channel together. To connect to a remote channel, the connecting machine must send a
message with the special valueRequestChannelConnect NetChannelId in the ID field, the
size field will contain the ID of the channel on the connecting machine, and the data stream
will be a null-terminated string containing the name of the channel being connected to. In
reply there will be a message with the special valueReplyChannelConnect NetChannelId

in the ID field, the ID of the channel on the replying machine in the size field, and the same
string in the data stream.

6 Threading

C++CSP originally used a many-to-many threading model. Each C++CSP program con-
tained one or more threads, which each contained one or more processes. This allowed
for considerable flexibility in the library, and the possibility of taking advantage of multi-
processor machines. Threads of the same program have a shared address space. This has
the advantage of being able to send pointers between threads (rather than sending an en-
tire data structure), although this in turn has the disadvantage of potentially letting the pro-
grammer break the CREW (Concurrent-Read, Exclusive-Write) principle. Having multiple
programs (communicating via the NET system) would also allow advantage to be taken of
multi-processor machines; the only difference would be not having the problematic shared
address space, and the speed difference.

There is another issue aside from the speed difference however. Inter-thread communi-
cations are done in C++CSP using semaphores. This has the advantage of being portable
and generally quick, but there is no portable equivalent of the socketselect() call for
semaphores that allows multiple semaphores to be checked (and potentially blocked on).
This means that communicating via the NET system will scalemuchbetter than communi-
cating between threads via semaphores. Of course, communicating between threads via the
NET system has the same speed as communicating between programs using the NET system.

Therefore to keep the API as simple and clean as possible, C++CSP has been changed
back to a single thread for processes to run in, and the advice for those wanting OS-level
concurrency on a single physical machine is to run multiple C++CSP machines (programs)
on the same physical machine.

6.1 Threading for the NET System

One option for adding the networking would be to run it in a separate thread to our single
main thread. However the communication and scheduling overheads for communicating with



N.C.C. Brown / C++CSP Networked 195

this thread cause problems. The network process would not (on most operating systems) be
able to block while (doing the equivalent of)ALTing between socket events and semaphore
events. The only viable thing to do would be to use sockets to communicate between the
individual threads and the network thread, which would then communicate using sockets to
the remote machines. Clearly this middle-man will only slow the process down for no gain.

Including the network code in the main thread decreases network latency but will also in-
crease the latency of local processes, because of the time taken to check the network. There
is a direct trade-off between network latency and local latency, and as such it will be con-
figurable. The benchmarks measuring network latency and local overheads can be found in
sections 7.1 and 7.2 respectively.

7 Benchmarks

Previous sections have discussed the API of the networked part of the C++CSP library. The
other important factor in distributed computing is the speed of the communications over the
network. The following benchmarks were all carried out with a Gentoo GNU/Linux desktop
machine with an Athlon 1600+ XP processor and 256MB of SDR RAM as the client (or
single machine in single machine benchmarks), and where a second machine was needed as
a server, a Windows XP machine with an Athlon 2400+ XP and 512MB of DDR RAM. The
machines are connected via a 100Mbps LAN, which had no other load during the tests.

7.1 Latency

7.1.1 Explanation

This benchmark tests the delay involved in communicating between two machines. The
easiest way to measure latency is of course a ping test. The time taken to send a (minimal)
communication from A to B, and a reply from B to A, is timed by A to form aping time.
Usually machines are pinged using ICMP/IP, a protocol designed for such things. ICMP
is usually responded to by the system kernel, whereas pinging between two processes over
TCP/IP involves extra latency because the message has to pass from the kernel to the user
process (which has to be scheduled by the operating system).

7.1.2 Results

A ping test was done between the two test machines, and over 50 runs the average ping
time was 718 microseconds. As a comparison, a standard ICMP ping between the machines
yielded an average time of 321 microseconds over 50 pings. This is mostly accounted by the
extra acknowledgements over the network generated by the C++CSP NET infrastructure (to
maintain CSP channel synchronisation), which in this case doubles the network traffic.

A slightly cleaned-up version of the code is provided in Appendix A, as it is a good small
example of how to use the networked part of C++CSP.

7.2 Network System Overheads

7.2.1 Explanation

Network system overheads are the amount of time that the network system of C++CSP spends
checking the network, i.e. the amount of time “lost” by the local processes because of having
the network component running at the same time. The benchmark that will test this runs the



196 N.C.C. Brown / C++CSP Networked

CommsTimebenchmark [18] locally, while running a ping client (see the previous bench-
mark). That client is pinging another machine but, more significantly, is checking the net-
work periodically. These times can then be compared with those from runningCommsTime
without starting up the network component of C++CSP – see Table 1.

7.2.2 Network Overheads Results

Table 1: Results from the Overheads Test

Network-check FrequencyTime Per CommsTime Loop (microseconds)
1 millisecond 2.754
500 milliseconds 2.814
No network 2.753

These timings are of absolute time, not CPU time. The results show that the networked
component of C++CSP does not slow down the local processes, even checking a thousand
times a second. This is a useful result, because it shows that supporting the network does not
“cost” the local processes any significant time.

7.3 Communication Overheads

7.3.1 Explanation

This class of benchmarks measures the time taken up by the communications involved in
distributing the computing across multiple machines on the network. This was measured
by performing this benchmark with both the server and client on the same machine using
normal C++CSP channels, and then running the server and client on separate machines using
network channels. So communication overheads encompasses latency and network system
overheads, in a realistic example of distributing a computation problem using C++CSP.

The benchmark chosen for this is calculating fourier coefficients. This is done by using
the trapezium method of integration. It is an easily parallelisable task, as each calculation
of a coefficient is independent of the others. It can therefore show how much difference the
network communications are making to the speed of the benchmark.

Benchmarks were run to calculate 10,000 coefficients, splitting them up into work pack-
ages (WPs) of 1, 10, 100, 1,000, or 10,000 coefficients. Each coefficient was calculated using
either 10, 100 or 1,000 trapeziums – giving a total of fifteen different benchmarks. Each work
package requires two communications – one to send the details of the work (40 bytes) to the
client, and one from the client to the server with the results (4*c bytes, wherec is the number
of coefficients calculated in that work package).

These benchmarks were run on the same machine (using normal non-network channels),
and then with the server on a different machine across the (100 Mbps) network, so that the
client (doing the calculations) is on the same machine for all the tests. The results for all tests
were averaged over 50 runs, to eliminate any anomalies from any other background tasks on
the machine “stealing” some processor time during the timed tests.

7.3.2 Results – Server and Client on the Same Machine

Table 2 shows the results from running the benchmark on the same machine. The results show
that no matter how the work is split, the work scales linearly with the amount of calculation
needed.



N.C.C. Brown / C++CSP Networked 197

Table 2: Times from the Same Machine Test (seconds)

Trapeziums 100 WPs 101 WPs 102 WPs 103 WPs 104 WPs
10 0.085583 0.084918 0.084831 0.086672 0.101007

100 0.818286 0.816175 0.815787 0.817667 0.831389
1000 8.101215 8.098428 8.094989 8.145628 8.105675

This means that the amount of communications that take place make no significant dif-
ference to the performance of the system for local channels – an encouraging result for non-
networked C++CSP. The one result that deviates slightly from the strictly linear pattern is
the test with the greatest number of work packages (only one calculation per work package)
and the least calculation per work package (only 10 trapeziums). It makes sense that the
communication overheads are mostly likely to show on the test with the smallest computa-
tion to communication ratio. Even for this extreme fine granularity, however, the effect is not
marked – about 18%.

7.3.3 Results – Server and Client on Different Networked Machines

Table 3 shows the results from this test. It is clear that over the network the results scale both
with the number of work packages and the trapeziums. The test with one work package has
virtually no network overheads because only two communications are involved. This can be
checked by comparing the network result for 1000 trapeziums (i.e. as the problem scales up)
with the non-network result – there is only a 0.5% difference. So the one work package result
can be used as a base case against which to compare the other networked results (in order to
see what difference the greater amount of network communications is making).

Table 3: Times from the Networked Test (seconds)

Trapeziums 100 WPs 101 WPs 102 WPs 103 WPs 104 WPs
10 0.102680 0.104186 0.158208 0.413571 4.108936

100 0.836837 0.840752 0.8772231.231270 4.110065
1000 8.139110 8.148298 8.195977 8.60298512.305083

For higher numbers of trapeziums (i.e. for higher computation to communication ratios),
the results are constant for 1, 10 and 100 work packages – so the overheads make no differ-
ence for these numbers of work packages (which have a linear relationship with the amount
of communication). As the number of work packages climbs towards 10,000, the time taken
starts to increase. 10,000 work packages means two network communications for each com-
putation of a coefficient – a very low computation to communication ratio. By comparing
the results for 10,000 work packages with those for one work package, it is fairly clear that
the communication overheads for 10,000 work packages are around 3 to 4 seconds. Each
work package involves four network communications (one each for the request and reply,
plus one for each acknowledgement generated by the NET infrastructure), so this overhead
is just under 100 microseconds per communication.

It should be noted that these benchmarks are not designed to show applicationspeed-up
– only network overheads. Farming out the client work (i.e.all the computational work) to
more than one machine would demonstrate that. Table 3 indicates that near linear speed-up
should be obtained for all combinations of numbers of trapeziums and work packagesexcept
for those whose timings are italicised.



198 N.C.C. Brown / C++CSP Networked

8 Availability

The latest version of the C++CSP library, including all the development covered in this pa-
per, is available from the website athttp://cppcsp.net/, under theLesser GNU Public
Licence.

The latency tests (section 7.1) can be found in the C++CSP distribution in the directory
moretest/; the files areping server.cpp andping client.cpp. They can be run using
the./More Test -y and./More Test -z commands for server and client respectively.

The network system overheads tests (section 7.2) are included in theping client.cpp

file in themoretest/ directory and thecommstime test.cpp file in thesimpletest/ di-
rectory, both in the C++CSP distribution. The tests can be run using the./More Test -x

(using./More Test -y for the ping server) and./Test -j commands.
The communication overhead tests (section 7.3) are located in thefourier server.cpp

and fourier client.cpp files in themoretest/ directory in the C++CSP distribution.
They can be run using./More Test -f and./More Test -g for the server and client re-
spectively.

9 Conclusion

Networked channels have been successfully integrated into C++CSP. The API is similar to
the existing C++CSP API and the new network channels are interchangeable with existing
channels. Thus, processes do not need to know whether the channel ends they are using
belong to normal channels or network channels. This makes it very easy to switch between
networked and non-networked versions of C++CSP applications. As home networking and
the Internet grow ever more popular, this greatly enhances the usefulness of the C++CSP li-
brary.

The ping test gave a ping time between two networked processes as double that of an
ICMP ping, which itself could be viewed as the maximum possible performance for a ping.
This result is still under a millisecond, which can be considered to be an acceptable result.
The network overhead test demonstrated that checking the network does not slow down the
local processes, which helps remove doubts concerning the possible performance penalty
from having the code checking the network in the same thread as the local processes. The
last benchmark showed that if the work is divided up into suitably-sized work packages, the
performance of distributed computing using networked C++CSP can scale almost linearly.

The (TCP/IP) sockets API provides untyped asynchronous reliable communication be-
tween networked machines. The C++CSP network system provides a typed synchronised
(reliable and multiplexed) layer on top of the sockets API that abides by CSP semantic rules
for channel communication and choice (represented byALTing). It is hoped that this net-
worked C++CSP may provide a useful API and support infrastructure for applications that
just want simple networking, as well as for those wanting networked CSP.

One planned addition to the library is the ability to communicate over “raw” TCP/IP
sockets. C++CSP network channels are the preferred method of network communication
as they observe CSP channel semantics and are typed, but C++CSP programs may need
to communicate using an existing protocol on a raw TCP/IP socket (for example, HTTP).
Allowing C++CSP programs to use sockets in the same way as channels would enhance the
library’s usefulness in creating networked applications.

For the future, the provision ofChannel Name Services(as inKRoC.net andJCSP.net)
for a more flexible means of establishing network connections dynamically will be consid-
ered. There is also the question of sending channel ends or processes over the network, as
discussed in [19, 14].



N.C.C. Brown / C++CSP Networked 199

References

[1] C.A.R.Hoare. Communicating Sequential Processes. InCACM, volume 21, pages 666–677, August 1978.

[2] C.A.R.Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[3] N.C.C. Brown and P.H. Welch. An Introduction to the Kent C++CSP Library. In J.F. Broenink and G.H.
Hilderink, editors,Communicating Process Architectures 2003, pages 139–156, 2003.

[4] GNU. Lesser GNU Public Licence.http://www.gnu.org/licenses/lgpl.html.

[5] Quickstone Technologies Ltd. JCSP Network Edition Home Page. Available at:http://www.
quickstone.com/xcsp/jcspnetworkedition/ Retrieved July, 2004.

[6] P.H.Welch, J.R.Aldous, and J.Foster. CSP networking for java (JCSP.net). In P.M.A.Sloot, C.J.K.Tan,
J.J.Dongarra, and A.G.Hoekstra, editors,Computational Science - ICCS 2002, volume 2330 ofLecture
Notes in Computer Science, pages 695–708. Springer-Verlag, April 2002.

[7] P.H. Welch and F.R.M.Barnes. Kent Retargetableoccam Compiler Home Page. Available at:http:
//www.cs.ukc.ac.uk/projects/ofa/kroc/ Retrieved July, 2004.

[8] P.H.Welch and D.C.Wood. The Kent Retargetableoccam Compiler. InProceedings of WoTUG 19,
volume 47, pages 143–166, March 1996.

[9] F.R.M. Barnes and P.H. Welch. Prioritised Dynamic Communicating Processes: Parts I and II. In James
Pascoe, Peter Welch, Roger Loader, and Vaidy Sunderam, editors,Communicating Process Architectures
2002, WoTUG-25, Concurrent Systems Engineering, pages 331–380, IOS Press, Amsterdam, The Nether-
lands, September 2002. ISBN: 1-58603-268-2.

[10] F.R.M. Barnes and P.H. Welch. Prioritised dynamic communicating and mobile processes.IEE Proceed-
ings – Software, 150(2):121–136, April 2003.

[11] P.H. Welch. Java Communicating Sequential Processes Home Page. Available at:http://www.cs.ukc.
ac.uk/projects/ofa/jcsp/ Retrieved July, 2004.

[12] P.H.Welch. Process Oriented Design for Java: Concurrency for All. In H.R.Arabnia, editor,Proceed-
ings of the International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’2000), volume 1, pages 51–57. CSREA, CSREA Press, June 2000.

[13] Mario Schweigler, Fred M.R. Barnes, and Peter H. Welch. Flexible, Transparent and Dynamicoccam
Networking With KRoC.net. In J.F.Broenink, editor,Communicating Process Architectures – 2003, vol-
ume 61 ofConcurrent Systems Engineering, pages 107–126, Amsterdam, The Netherlands, September
2003. (WoTUG), IOS Press.

[14] M. Schweigler. Adding Mobility to Networked Channel-Types. In I. East, J. Martin, P. Welch, D. Duce,
and M. Green, editors,Communicating Process Architectures 2004, WoTUG-27, Concurrent Systems En-
gineering, ISSN 1383-7575, pages 201–218, IOS Press, Amsterdam, The Netherlands, September 2004.

[15] F.R.M.Barnes and P.H.Welch. Prioritised Dynamic Communicating and Mobile Processes.IEE
Proceedings-Software, 150(2):121–136, April 2003.

[16] Geoffrey Lee. Non-blocking sockets.http://www.wychk.org/~glee/non-blocking.html.

[17] Sun Microsystems. How To Use Threads.http://java.sun.com/products/jfc/tsc/articles/
threads/threads1.html.

[18] Roger M.A. Peel. A Reconfigurable Host Interconnection Scheme for Occam-Based Field Programmable
Gate Arrays. In Alan G. Chalmers, Henk Muller, and Majid Mirmehdi, editors,Communicating Process
Architectures 2001, volume 59 ofConcurrent Systems Engineering, pages 179–192, IOS Press, Amster-
dam, The Netherlands, September 2001. IOS Press.

[19] F.R.M. Barnes and P.H. Welch. Communicating Mobile Processes. In I. East, J. Martin, P. Welch, D. Duce,
and M. Green, editors,Communicating Process Architectures 2004, WoTUG-27, Concurrent Systems En-
gineering, ISSN 1383-7575, pages 201–218, IOS Press, Amsterdam, The Netherlands, September 2004.



200 N.C.C. Brown / C++CSP Networked

Appendix A: Ping Example Code

class PingClientTester : public CSProcess { // client
protected:

void run() {
... read in server address into the string connectTo
Net2OneChannel<std::string> chanIn("pong");
One2NetChannel<std::string> chanOut(connectTo + "/ping");

while (true) {
chanOut.writer() << ourName;
chanIn.reader() >> theirName;
sleepFor(Seconds(1)); // 1 second delay between pings

}
}

};

class PingHandler : public CSProcess { // server
public:

Net2OneChannel<std::string> n2o;
One2NetChannel<std::string> o2n;

protected:
void run() {

Chanout<std::string> out(o2n.writer());
Chanin<std::string> in(n2o.reader());

try {
while (true) {

in >> theirName;
out << ourName;

}
}
catch (PoisonException e) {}
in.poison(); out.poison();

}
};

class PingServerTester : public CSProcess {
protected:

void run() {
Barrier barrier(1);
Net2OneAccepterChannel<std::string> accept("ping");

while (true) {
PingHandler* ph = new PingHandler(mn);
std::pair<Net2OneChannel<std::string>*,std::string> pr(&ph->n2o,"");

accept.reader() >> pr;

try {
ph->o2n.connect(pr.second + "/pong");
spawnProcess(ph,&barrier); // only spawn if there is no poison

}
catch (PoisonException) {

ph->n2o.reader().poison();
}

}
}

};


