
Electronic Communications of the EASST
Volume ? (2009)

Proceedings of the
Ninth International Workshop on

Automated Verification of Critical Systems
(AVOCS 2009)

Automatically Generating CSP Models for Communicating Haskell
Processes

Neil C. C. Brown

12 pages

Guest Editors: Markus Roggenbach
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Automatically Generating CSP Models for Communicating Haskell
Processes

Neil C. C. Brown1

1 neil@twistedsquare.com, http://www.cs.kent.ac.uk/∼nccb2/
Computing Laboratory, University of Kent, UK

Abstract: Tools such as FDR can check whether a CSP model of an implementa-
tion is a refinement of a given CSP specification. We present a technique for gen-
erating such CSP models of Haskell implementations that use the Communicating
Haskell Processes library. Our technique avoids the need for a detailed semantics
of the Haskell language, and requires only minimal program annotation. The gen-
erated CSPM model can be checked for deadlock or refinements by FDR, allowing
easy use of formal methods without the need to maintain a model of the program
implementation alongside the program itself.

Keywords: CSP, Automatic Model Generation, Haskell

1 Introduction

Programs designed using formal methods such as Communicating Sequential Processes (CSP)
[Hoa85, Ros97] typically have a specification and a more complicated implementation. A tool
such as FDR [For97] can be used to check that the implementation is a refinement of the speci-
fication. However, determining the CSP model of an implementation – written in an executable
programming language using a CSP-based library – can be difficult due to problems with un-
clear semantics, or translation errors. Generating a model from the program should thus be done
automatically.

Generating a formal model of an existing program typically requires complete access to the
program’s source code (including libraries) and a detailed semantics of the programming lan-
guage. Both requirements can be problematic: libraries may be closed source, and the program-
ming language may lack a detailed semantics, especially a platform independent semantics that
includes the semantics of the threading system and memory model.

Communicating Haskell Processes (CHP) [Bro08] is a library for the functional programming
language Haskell with a strong correspondence to CSP. CHP allows for execution of CSP-like
programs, combining the concurrency concepts of CSP with the expressive power of Haskell.

In this paper we describe a technique for generating formal models of CHP programs without
the need for source code analysis. We take advantage of Haskell’s purity and thus do not require a
semantics of the Haskell language. We describe the class of programs that can be modelled, along
with several examples. Our technique can be used to generate models to check for refinement
of specifications, or for generating models of rapidly prototyped programs (for example, using
agile development methods).

1 / 12 Volume ? (2009)

mailto:neil@twistedsquare.com
http://www.cs.kent.ac.uk/~nccb2/

Automatically Generating CSP Models for Communicating Haskell Processes

2 CHP

Although Haskell is a functional programming language, it has support for imperative program-
ming through the concept of monads: a monad captures a common pattern that can be used for
imperative programming. Thus, a CHP program can be conceptually separated into the pure
functional computations, and the imperative communication aspects.

For example, this is a map process in CHP that transforms items as they pass through:

map :: (a -> b) -> Chanin a -> Chanout b -> CHP ()
map f input output = do x <- readChannel input

writeChannel output (f x)
map f input output

The top line is the type signature of the process. Types that begin with a lower-case letter are
parameterised types – thus this type reads: given a function from some type a to some type b,
an incoming channel of type a and an outgoing channel of type b, the process will yield a CHP
process with the () unit type as its return.

The implementation of the process is straightforward. A value is read from the input channel
and bound to the name x. The result of applying the function f to x is sent on the output channel,
and then the process recurses. It can be seen that the behaviour of the pure function f has no
effect on the communication behaviour of the process (providing that f terminates).

3 Approach

Our approach is to take the CHP library and provide a mirror implementation with near-identical
Application Programming Interface (API). This mirror implementation does not properly execute
the code as the original CHP would, but instead traces1 the structure of the program and produces
a CSP model of the program.

The original library has API functions for creating channels and barriers, and communicating
and synchronising on them (see section 7.1 for details on the synchronisation semantics). The
mirror version has the same creation functions, but the internal definition of channels and barriers
changes so that they simply hold a unique identifier. The communication and synchronisation
functions are changed in the mirrored version to record the synchronisation in a CSP model,
rather than performing an actual synchronisation.

The mirror definitions for the parallel composition operator and the external choice operator
generate the models for all processes involved, and then compose the models using parallel
composition and external choice. The monad system in Haskell means that we can alter the
definition of sequential composition (akin to overloading the semi-colon in C++ or Java) to
compose the models in sequence. Thus only the pure computations might be executed2, but none
of the imperative side-effecting parts of the process. This is because the latter are replaced by
code that only generates the model. The three types of imperative statements that can occur in
the CHP monad are:

1 The sense of tracing used here is not related to the idea of traces in CSP.
2 Because of Haskell’s laziness, these will only be executed if the result is required to make a choice about the
program’s flow (see section 3.1 for more details).

Proc. AVOCS 2009 2 / 12

ECEASST

1. Channel/barrier creation,

2. Channel communication and barrier synchronisation, and

3. Lifted IO actions (e.g. writing to a file, opening a network socket).

We have already explained the first two; IO actions are described in section 5. Given the
existence of this mirror library, the main change needed to generate a model rather than run a
program is to change the normal import Control.Concurrent.CHP – perhaps using a pre-processor
for ease of use – to import Control.Concurrent.CHP.Model.

This library substitution approach avoids the need for source code analysis, which means that
no source code is used by the tool. One drawback to this is that looping and recursive behaviours
cannot be detected automatically, and require extra annotations (see section 4).

3.1 Reading from Channels

Our approach benefits from Haskell’s pure and lazy nature. Many processes, such as the earlier
map process, have behaviour that is unaffected by the values being transmitted. It is thus possible
to return the value ⊥ from reading a channel, i.e. a value that will give an error if evaluated. The
consequences of this change are as follows.

• If the value read from the channel is discarded, returning ⊥ will not have any adverse
effect.

• If the value is sent on another channel, this will also not cause an error as we re-implement
the channel output function. We are able to track the different ⊥ values throughout the
system to know which channel the value came from.

• If the value is used as part of another computation that does not end up being evaluated
(e.g. because the new value is sent down a channel, or is not needed), there will again not
be a problem because of Haskell’s laziness.

• If the value is evaluated because it is used to determine the program’s flow, this will cause
the error from the ⊥ value to occur. This is explored further in section 5.

3.2 Value Sources

The separation of monadic side effects from pure code means that any value in a CHP process
must come from one (or a combination) of three sources:

1. A deterministic source, e.g. a constant in the program, or a pure computation with constant
inputs.

2. A value read from a communication channel, or returned from an IO action.

3. A parameter to the process.

3 / 12 Volume ? (2009)

Automatically Generating CSP Models for Communicating Haskell Processes

Values in the first category are the same every time the program is run, and thus any decisions
about the program’s behaviour based solely on these values will always have the same outcome.
Values in the second category are dealt with in section 5, while values in the third category are
explained in section 4.

It should be emphasised that our approach is not the same as producing a model based on
observation of executing the process. The combination of the replacement of the monad, and
the use of ⊥ bottom values means that we can ensure that the model we generate is an accu-
rate reflection of the process’s behaviour in every execution, with the exception of issues dealt
with in later sections of this paper, and known Haskell “back doors” such as the aptly named
unsafePerformIO.

4 Recursion and Looping

Most processes have infinite behaviour, via the use of recursion. A very straight-forward example
is a process that consumes input:

blackHole :: Chanin a -> CHP ()
blackHole input = do readChannel input

blackHole input

This can also be written using the common Haskell function forever that infinitely repeats in
sequence a monadic action:

blackHole’ :: Chanin a -> CHP ()
blackHole’ input = forever (readChannel input)

Infinite behaviour cannot be detected with our substituted monad; there is no way to determine
after one million consecutive inputs whether the next statement will definitely be a input. We
must require the programmer to add an annotation to aid in spotting recursion.

The process annotation is placed as follows:

blackHole :: Chanin a -> CHP ()
blackHole = process "blackHole" inner

where
inner input = do readChannel input

blackHole input

The process annotation uses Haskell’s type-classes to take as its second argument a process
with N arguments, and return a process that takes the same N arguments. The behaviour of
the process wrapper function is to record the arguments to the process ready for future equality
checking.

When blackHole is first called with a channel c, the process annotation stores a pair of the pro-
cess name and a list containing all the arguments (in this case, just c) as the key in an associative
map with a placeholder for the value. When the process then recurses, the process name and list
of arguments (which is again, the singleton list with c) is looked up in the map. A value is found,
which causes the execution of the process to return the placeholder. Thus only one execution of
the process is examined, and the recursive call is skipped.

Proc. AVOCS 2009 4 / 12

ECEASST

The analysis of the blackHole process is then complete, and the placeholder is substituted
for a definition of the process’s behaviour. This relies on the user-provided guarantee that all
parameters that affect a process’s behaviour are included in the argument list; a process may not
use any other free names.

As well as the process annotation, we supply a replacement for the Haskell library function
forever , named foreverP that has identical semantics, but correctly deals with the repeating be-
haviour in our mirror implementation. These annotations can be used with the normal library
(process becomes benign, foreverP is simply defined as forever) without effect, but then they take
on significance in the mirror implementation.

5 IO Actions

An interaction with the program’s external environment is an action in the IO monad in Haskell.
This can include (but is not limited to) interactions with files, sockets and graphical user inter-
faces. Results of these interactions cannot be predicted and are non-deterministic. Our generated
model accounts for this by modelling the interactions as events selected by the environment. The
complication is modelling the value returned by operations such as reading from a file.

With source code analysis it would be possible to analyse how the result affects the program’s
subsequent behaviour. However, with our approach, the program’s behaviour can only be de-
termined by testing it with each possible value. For values with small finite domains, such as
booleans, or enumerated types, this is easily achieveable. For values such as 32-bit integers, it
becomes infeasible, and for values with infinite domains such as strings, it is impossible.

Our analysis of a program is therefore accurate and feasible if the IO actions return values
with small finite domains, or if the values are discarded. This is often the case for IO actions:
for example, printing to the screen, waiting for a specified amount of time or writing to a file all
return values of the unit type, which has a domain size of one (which also means the value is
not usually inspected). We can extend our approach to cover some other cases where the value
is used and the domain is large; the problem of determining a program’s behaviour for a range
of inputs without source code analysis is identical to the problem of program testing. Several
developments have been made in this field in Haskell.

Claessen and Hughes’ QuickCheck generated random values of a given type and tested that
specified properties held on the output [CH00]. This was made more systematic in Runciman
et al.’s SmallCheck, which generated all values up to a given depth [RNL08]. The depth of a
list would be its length, whereas the depth of an integer would be its absolute value. The clever
extension, Lazy SmallCheck, took advantage of Haskell’s laziness to specialise on demand, al-
lowing more efficient exploration of the state space.

We use the Lazy SmallCheck library to explore a program’s behaviour given the result of an
IO action. Crucially, Lazy SmallCheck will efficiently detect if the value is not used to affect the
program’s behaviour, as the first value it will try will be⊥. If the program does not raise an error
with this value, it must not have evaluated it, and thus it cannot have altered its behaviour based
on the value.

We use Lazy SmallCheck with an arbitrary maximum depth. If the deepest value is not reached
in the lazy search, we can deduce that we have covered all possible behaviours of the program.

5 / 12 Volume ? (2009)

Automatically Generating CSP Models for Communicating Haskell Processes

If this is not the case, the model generated is only an approximation of the program’s behaviour,
and much of the advantages of the formal method are lost. This is a necessary restriction of our
approach and one that we expose to the user. We deal with values returned from reading channels
in the same manner as the result of IO actions.

6 Examples

We provide two examples of our system: the first is a small example demonstrating refinement
checking, the second is a larger example demonstrating deadlock freedom.

6.1 Copy Buffer

A simple example of a refinement check, taken from the FDR manual [For97], is that of a copying
process, specified as follows:

COPY = left?x→ right!x→ COPY

The example implementation given in the manual, in CSP, is:

SEND = left?x→ mid!x→ ack→ SEND

REC = mid?x→ right!x→ ack→ REC

SYSTEM = (SEND ||
{X}

REC) \ X where X = {mid,ack}

We can create the analogue of this implementation in CHP as follows:

system :: forall a. Typeable a => Chanin a -> Chanout a -> CHP ()
system input output
= do c <- newChannelWithLabel "mid"

d <- newBarrierWithLabel "ack"
enroll d (\d0 -> enroll d (\d1 ->

send input (writer c) d0 <||> rec output (reader c) d1))
return ()

where
send :: Chanin a -> Chanout a -> EnrolledBarrier -> CHP ()
send = process "send" (\input mid ack ->

do x <- readChannel input
writeChannel mid x
syncBarrier ack
send input mid ack)

rec :: Chanout a -> Chanin a -> EnrolledBarrier -> CHP ()
rec = process "rec" (\output mid ack ->

do x <- readChannel mid
writeChannel output x
syncBarrier ack x
rec output mid ack)

Proc. AVOCS 2009 6 / 12

ECEASST

The backslash represents a lambda, and introduces an anonymous function (e.g. \x -> x is the
identity function). The enroll function takes as its arguments a barrier, and a function that itself
takes an enrolled barrier and yields a CHP process. This higher-order process style is used to
scope enrolling on and resigning from the barrier.

This program can be executed normally with the CHP monad as part of a larger system, or
used with our new mirror library to generate a model, which results in the following:

channel ack
channel in
channel mid
channel out
main_0= (((send_1) [|{| ack , mid |}|] (rec_2)))
rec_2= (mid?x_2 -> out!x_2 -> ack -> rec_2)
send_1= (in?x_1 -> mid!x_1 -> ack -> send_1)
main = main_0

It can be seen that, a few spurious brackets and appended unique identifiers aside, this is the
same as the CSP we began with – except for the hiding. We can now prove this is a refinement
of the original specification by adding the following lines to the FDR script:

COPY = in?x -> out!x -> COPY
assert COPY [FD= (main\{mid,ack})
assert COPY [T= (main\{mid,ack})

These refinements check successfully. We were able to take a specification, implement a CHP
equivalent (in this case we had some CSP for the implementation, but this was not necessary),
and make a successful refinement check against the original specification.

The main manual step required was that we hid the mid and ack events. We could attempt
to infer when to hide events (a difficult option), or we could add an operator in the code to hide
events. For example, we could modify a line of our system process to be:

enroll d (\d0 -> enroll d (\d1 ->
send input (writer c) d0 <||> rec output (reader c) d1
<\\> [c, d]))

6.2 Dining Philosophers

As an example of generating a CSP model from a CHP program and checking for deadlock, we
use the dining philosophers problem. The code for the deadlocking dining philosophers, that can
be executed normally, or used to produce traces [BS08], is as follows:

fork :: EnrolledBarrier -> EnrolledBarrier -> CHP ()
fork = process "fork" (\left right ->

foreverP ((do syncBarrier left
syncBarrier left)

<-> (do syncBarrier right
syncBarrier right)))

7 / 12 Volume ? (2009)

Automatically Generating CSP Models for Communicating Haskell Processes

philosopher :: EnrolledBarrier -> EnrolledBarrier -> CHP ()
philosopher = process "philosopher" (\left right ->

foreverP (
do randomDelay

syncBarrier left <||> syncBarrier right
randomDelay
syncBarrier left <||> syncBarrier right))

where
randomDelay :: CHP ()
randomDelay = liftCHP $ (liftIO $ getStdRandom (randomR (500000, 1000000))) >>= waitFor

college :: Int -> CHP ()
college = process "college" (\nPhil ->

withBarrierPairListWithStem nPhil "fork_left_phil" (\forkLeftChans ->
withBarrierPairListWithStem nPhil "fork_right_phil" (\forkRightChans ->
runParallel (

[fork (fst (forkRightChans !! n)) (fst (forkLeftChans !! ((n + 1) ‘mod‘ nPhil)))
| n <- [0.. nPhil - 1]]
++
[philosopher (snd (forkLeftChans !! n)) (snd (forkRightChans !! n))
| n <- [0.. nPhil - 1]]))))

The process annotations on the fork and philosopher are not strictly necessary (the use of
foreverP catches the infinite behaviour) but help to label the processes in the generated model.
The <-> operator is external choice, while <||> is parallel composition (and runParallel is a
list version).

This real running code can then be changed to use the CHP-model library by changing a single
import statement (omitted for brevity). The generated model for three philosophers is shown in
figure 1. If we append the line assert main :[deadlock free] to that script, FDR
produces a trace of one of the deadlocks in the system:

BEGIN TRACE example=0 process=0
fork_right_phil2
fork_right_phil1
fork_right_phil0
END TRACE example=0 process=0

7 Post-Processing

After the model for a program has been determined, it is a relatively simple matter to print it
out in the machine-readable CSPM form that the FDR model checker expects. The only current
drawback is that each different combination of arguments to an annotated process will correspond
to a different process in the generated output. Returning to our example of the input consuming
process, the system with blackHole c <||>blackHole d generates:

channel c
channel d
blackHole_1= (c?x_1 -> blackHole_1)

Proc. AVOCS 2009 8 / 12

ECEASST

blackHole_2= (d?x_2 -> blackHole_2)
main_0= (((blackHole_1) ||| (blackHole_2)))
main = main_0

Even though the behaviour of the two black hole processes is identical except for the channel
involved, we currently generate two instantiations of the process rather than one parameterised
process. In future we would like to maintain the correctness of the specification, but also reduce
its verbosity by merging such processes together.

7.1 Alphabets

In CHP, the synchronisation rules are as follows. A channel requires exactly two processes to
synchronise on it. A barrier has an enrollment count, and a number of processes equal to that
count must synchronise on the barrier for it to complete.

In Roscoe’s CSP [Ros97], an event can have any number of parties, from one upwards. Which
processes must synchronise with each other on an event is determined by the shared alphabet
when the two processes are composed in parallel. Given this CSP:

P = a→ b→ c→ SKIP

Q = b→ SKIP

R = c→ SKIP

ALL = P ||
{b}

Q ||
{c}

R

The event a will involve just P, whereas b will involve P and Q, and c will involve P and R.
Should the event a have been included in the alphabet of either parallel composition, P would
cause deadlock as the other process in the composition would not be offering the event a.

In translating CHP programs into CSP models, we must infer the alphabets for parallel com-
positions. Since all of our events have unique identifiers we are able to follow a simple rule: the
events in the alphabet of parallel composition are the intersection of the sets of events engaged
in by the two processes being composed.

This rule works correctly for most programs (including the dining philosophers example).
However, consider the following program:

p = do a <- newBarrierWithLabel "a"
b <- newBarrierWithLabel "b"
enroll a (\a0 -> enroll a (\a1 -> enroll b (\b0 -> enroll b (\b1 ->

runParallel [do syncBarrier a0
syncBarrier b0

, syncBarrier a1]))))

This program will deadlock when run, as only one process (of two enrolled) will synchronise
on the barrier b. If the specification is generated with our original simple rule, we get this
specification:

p = (a -> b -> SKIP) [|{| a |}|] (a -> SKIP)

9 / 12 Volume ? (2009)

Automatically Generating CSP Models for Communicating Haskell Processes

This specification will not deadlock, as the event b is not in the shared alphabet with any other
process. More generally, if less processes are using a barrier than are enrolled, or if only one
process is using a particular channel, the model generated with our simple alphabet rule will be
incorrect.

The simplest solution to this is as follows. We augment our framework to track how many
processes should be using a particular event (two for channels, the enrollment count for barri-
ers). If the actual number of processes turns out to be lower than this, we compose the relevant
processes in parallel with a dummy process (SKIP) with the events shared, for example:

p = ((a -> b -> SKIP) [|{| a |}|] (a -> SKIP))
[|{| b |}|] SKIP

This new model will reveal the deadlock in the original program.

8 Summary

Our approach is able to generate models for the following features of CHP programs:

• sequential and parallel composition,

• external choice,

• barrier creation and synchronisations (but not a proper semantics of dynamic enrollment
and resignation),

• channel outputs,

• channel inputs and lifted IO actions (where the result either has a small finite domain, or
is not used to make a choice about the program’s behaviour), and

• terminating pure computations.

The main area not supported is where the domain of channel-reads and IO-actions is large
and the result is used to influence decisions about the program’s flow. We also do not support
programs with pure computations that do not terminate – such non-termination would also be
problematic in the real running version of CHP.

9 Conclusions

We have demonstrated a technique for generating CSP models of Haskell programs that use
the CHP library. It does not require complete access to the source code, and requires minimal
program annotation. The technique can be used to generate models for prototype programs (or
programs developed with an agile methodology) or to generate models for programs and perform
a refinement check against a specification.

The CSPM that is generated by our approach can be passed directly to tools such as FDR in
order to prove properties such as freedom from deadlock or perform refinement checks. It can

Proc. AVOCS 2009 10 / 12

ECEASST

also be used with other model-checkers (such as ProB [LF08]) or tools (such as FDR explorer
[FW09]) on the specification. Alternatively, a tool such as ProBE [Ros97] could be used to
explore the possible traces of a program by deciding which of all the available events should
happen next.

9.1 Availability

The CHP library is already available for general use – more details can be found at http://www.
cs.kent.ac.uk/projects/ofa/chp/. We hope to soon release the mirror implementation described in
this paper that generates CSP models.

Bibliography

[Bro08] N. C. C. Brown. Communicating Haskell Processes: Composable Explicit Concurrency
Using Monads. In Communicating Process Architectures 2008. Pp. 67–84. Sept. 2008.

[BS08] N. C. C. Brown, M. L. Smith. Representation and Implementation of CSP and VCR
Traces. In Communicating Process Architectures 2008. Pp. 329–345. Sept. 2008.

[CH00] K. Claessen, J. Hughes. QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs. In Proc. of International Conference on Functional Programming
(ICFP). ACM SIGPLAN, 2000.

[For97] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 Manual. 1997.

[FW09] L. Freitas, J. Woodcock. FDR Explorer. Formal Aspects of Computing 21:133–154,
2009.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
http://www.usingcsp.com/

[LF08] M. Leuschel, M. Fontaine. Probing the Depths of CSP-M: A new FDR-compliant Vali-
dation Tool. ICFEM 2008, 2008.

[RNL08] C. Runciman, M. Naylor, F. Lindblad. Smallcheck and Lazy Smallcheck: automatic
exhaustive testing for small values. In Haskell ’08: Proceedings of the first ACM SIG-
PLAN symposium on Haskell. Pp. 37–48. ACM, 2008.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

11 / 12 Volume ? (2009)

http://www.cs.kent.ac.uk/projects/ofa/chp/
http://www.cs.kent.ac.uk/projects/ofa/chp/
http://www.usingcsp.com/
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

Automatically Generating CSP Models for Communicating Haskell Processes

channel fork_left_phil0
channel fork_left_phil1
channel fork_left_phil2
channel fork_right_phil0
channel fork_right_phil1
channel fork_right_phil2
college_1=

(((fork_2)
[|{| fork_left_phil1 , fork_right_phil0 |}|]
((fork_3)
[|{| fork_left_phil2 , fork_right_phil1 |}|]
((fork_4)
[|{| fork_left_phil0 , fork_right_phil2 |}|]
((philosopher_5) ||| ((philosopher_6) ||| (philosopher_7)))))))

fork_2= (repeated_8)
fork_3= (repeated_9)
fork_4= (repeated_10)
main_0= (college_1)
philosopher_5= (repeated_11)
philosopher_6= (repeated_12)
philosopher_7= (repeated_13)
repeated_8=

(((fork_right_phil0 -> fork_right_phil0 -> SKIP)
[]
(fork_left_phil1 -> fork_left_phil1 -> SKIP))

; repeated_8)
repeated_9=

(((fork_right_phil1 -> fork_right_phil1 -> SKIP)
[]
(fork_left_phil2 -> fork_left_phil2 -> SKIP))

; repeated_9)
repeated_10=

(((fork_right_phil2 -> fork_right_phil2 -> SKIP)
[]
(fork_left_phil0 -> fork_left_phil0 -> SKIP))

; repeated_10)
repeated_11=

(((fork_left_phil0 -> SKIP) ||| (fork_right_phil0 -> SKIP))
; ((fork_left_phil0 -> SKIP) ||| (fork_right_phil0 -> SKIP))
; repeated_11)

repeated_12=
(((fork_left_phil1 -> SKIP) ||| (fork_right_phil1 -> SKIP))
; ((fork_left_phil1 -> SKIP) ||| (fork_right_phil1 -> SKIP))
; repeated_12)

repeated_13=
(((fork_left_phil2 -> SKIP) ||| (fork_right_phil2 -> SKIP))
; ((fork_left_phil2 -> SKIP) ||| (fork_right_phil2 -> SKIP))
; repeated_13)

main = main_0

Figure 1: The generated model for the deadlocking version of the dining philosophers with three
philosophers.

Proc. AVOCS 2009 12 / 12

	Introduction
	CHP
	Approach
	Reading from Channels
	Value Sources

	Recursion and Looping
	IO Actions
	Examples
	Copy Buffer
	Dining Philosophers

	Post-Processing
	Alphabets

	Summary
	Conclusions
	Availability

