
An eye tracking study assessing the impact of background styling
in code editors on novice programmers’ code understanding

Kang-il Park
kangil.park@huskers.unl.edu
University of Nebraska-Lincoln

Lincoln, Nebraska, USA

Pierre Weill-Tessier
pierre.weill-tessier@kcl.ac.uk

King’s College London
London, UK

Neil C. C. Brown
neil.c.c.brown@kcl.ac.uk
King’s College London

London, UK

Bonita Sharif
bsharif@unl.edu

University of Nebraska-Lincoln
Lincoln, Nebraska, USA

Nikolaj Jensen
nikolaj.jensen@kcl.ac.uk
King’s College London

London, UK

Michael Kölling
michael.kolling@kcl.ac.uk
King’s College London

London, UK

ABSTRACT
Background and Context: The designers of programming editors
aimed at learners have long experimented with different styles
of code presentation. The idea of syntax highlighting – coloring
specific words – is very old. More recently, some editors (including
text-, frame- and block-based editors) have added forms of scope
highlighting – colored rectangles to represent programming scope
– but there have been few studies to investigate whether this is
beneficial for novices when reading and understanding program
code.
Objectives:We investigated whether the use of scope highlighting
during code comprehension tasks (a) has an impact on where users
focus their gaze, (b) affects the accuracy of user’s responses to tasks,
and/or (c) affects the speed of user’s correct responses to the tasks.
Method:We conducted a controlled trial with a crossover design,
where all participants completed the same twelve code compre-
hension tasks, each performed in one of three scope highlighting
conditions. The conditions were (a) “plain” Java with no scope high-
lighting, (b) Java with BlueJ’s scope highlighting, and (c) Stride, a
frame-based language very similar to Java. We used a combination
of eye-tracking hardware and video observation to record where
users were looking in the code, the time it took them to answer the
task, and the graded correctness of their answer. The data comes
from students at two institutions in different countries.
Findings: We found that there was no difference between plain
Java, highlighted Java or Stride in terms of correctness, or speed
to produce correct answers – and this was unaffected by whether
users had seen the latter two interfaces before. There was a dif-
ference in eye gaze behavior, especially between Stride and the
two Java interfaces. Participants’ gaze moved around less, they
had shorter saccade lengths, longer fixation durations, fewer re-
gressions, and less line coverage in Stride, which could imply a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9976-0/23/08. . . $15.00
https://doi.org/10.1145/3568813.3600133

higher cognitive load. Regardless of condition, all participants who
answered correctly read buggy lines toward the end of the task.
Implications: The highlighting conditions showed a difference in
low-level gaze behavior, but this did not translate into a difference at
the higher level of program comprehension task performance. The
gaze behavior difference could be due to the novelty of the design of
the Stride interface other than the scope highlighting (which showed
no such difference when present/not present in the Java display).
However, it seems that large changes in the presentation of the
program code have only a small (if any) effect on task performance.

CCS CONCEPTS
• Human-centered computing→ Visualization theory, con-
cepts and paradigms; • Social and professional topics→ Com-
puter science education.

KEYWORDS
Java, eye-tracking, code understanding, empirical study, Stride

ACM Reference Format:
Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj
Jensen, and Michael Kölling. 2023. An eye tracking study assessing the
impact of background styling in code editors on novice programmers’ code
understanding. In Proceedings of the 2023 ACM Conference on International
Computing Education Research V.1 (ICER ’23 V1), August 07–11, 2023, Chicago,
IL, USA.ACM, NewYork, NY, USA, 20 pages. https://doi.org/10.1145/3568813.
3600133

1 INTRODUCTION
Learning to read and write programs requires using some kind of
program editor. There are many options available, whether in the
block-based or text-based editing paradigm, or a hybrid option like
frames [28]. Although these all use different editing paradigms,
their presentation is ultimately lines of text with indentation used
to represent scope – but differing in their use of color and other
decorations for indicating program structure. As shown in the top
left of Figure 1, classic programming displays tend just to highlight
keywords: syntax highlighting. Block- and frame-based systems use
colored rectangles to indicate scope, but generally without syntax
highlighting (see the bottom of Figure 1).

The Java editor in BlueJ [29] has for a long time (since 2010)
used such scope highlighting, as well as syntax highlighting: see
the top-right of Figure 1. Thus there are many options for code

https://orcid.org/0009-0005-0854-5229
https://orcid.org/0000-0002-6999-8767
https://orcid.org/0000-0001-6086-2479
https://orcid.org/0000-0002-5178-7160
https://orcid.org/0009-0004-9311-5735
https://orcid.org/0000-0003-0544-2003
https://doi.org/10.1145/3568813.3600133
https://doi.org/10.1145/3568813.3600133
https://doi.org/10.1145/3568813.3600133

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj Jensen, and Michael Kölling

presentation (termed presentationmodality here), but there has been
little investigation into which is beneficial – either for professionals
or for novices, the latter being our area of interest.

For clarity, we provide the following definitions of concepts
crucial to this paper:

Syntax highlighting is when certain words or characters in the
program use a different font color, usually based on the meaning
of the token. For example, keywords in the language might be
colored blue, string literals might be green. The color affected is
the color of the text characters, not the color of the background.

Scope highlighting is when the background of the program code
is highlighted according to the lexical scopes of the program.
Examples are shown in the top-right and bottom of Figure 1.
Such highlighting may be inferred from the program source
(as in our Java highlight condition) or determined as part of a
structural editor (as in Stride or block-based editors).

We conducted a study with programming novices to compare
three different code presentation modalities, which are shown in
Figure 1:

(1) Java with No scope highlighting (JN). This is a very common
presentation modality in text editors. It does feature syntax
highlighting – coloring of keywords like if or public, but
the background is plain white.

(2) Java with scope Highlighting (JH). This mode again fea-
tures syntax highlighting, but also has coloured rectangles
to emphasise where the curly bracket scopes extend from/to.

(3) Stride (S). Stride is a frame-based editor with a syntax that is
very similar to Java, although it does not need curly brackets
and semi-colons for delineation of code (this is determined
implicitly by the editor structure, like in block-based editors).
Stride uses only minimal syntax highlighting, but its display
of scopes is very similar to BlueJ’s scope highlighting for
Java.

These are three realistic approaches to viewing code, all in use
in many classrooms worldwide, with a very similar syntax but
differences in how scope is presented. The obvious question for
computing education is whether these interfaces have a different
effect when novices use them. In this study, we thoroughly investi-
gated the effects of presentation modality on novice programmers
during code comprehension (code summarization, and bug finding)
tasks. Our research questions are:

RQ1: Does presentation modality affect the accuracy of users on
code comprehension tasks?

RQ2: Does presentation modality affect the speed of users on code
comprehension tasks?

RQ3: Does presentation modality affect where users look during
code comprehension tasks?

The key features of our study are as follows:

• A cross-over trial of three different programming interfaces.
• A combination of eye-tracking data, task correctness, and
speed, to provide multiple complementary measures of the
differences between interfaces.

• Participants from two institutions in two different countries.
• Pre-registered materials and analysis plan.

The paper is organized as follows. We explore related work in
section 2, we describe our method in section 3, then detail our
results in section 4, followed by discussion and implications in
section 5 and finally conclusions and future work in section 6.

2 RELATEDWORK
2.1 Relation between theory and editor design
The designers of code editors frequently add new visual decora-
tions [43]. We are only aware of one theory that addresses visual
aspects of program editors, by Conversy [14]. Conversy discusses
the idea of “selective” markings that enable a viewer to instantly
discern differences at a glance at the whole view. This can be done
with using color or large luminosity differences, but would not ap-
ply to, for example, font changes. Thus syntax highlighting, scope
highlighting (but also indentation) are selective, but curly brackets
or semi-colons are not. There are many other theories in program
comprehension research – such as the idea of beacons, top-down
vs bottom-up comprehension, or semantic chunking [40, 42, 50] –
but syntax or scope highlighting are not implemented in alignment
with any of these theories.

The main program comprehension model to which highlighting
may (post hoc) relate is the Block Model [34, 35]. The lowest level
of the block model are atoms, such as language elements – this
would correspond to syntax highlighting of language keywords or
literals. The second lowest-level are blocks, which would relate to
scope highlighting, emphasizing the block grouping within source
code. Thus the Block Model suggests that the highlights will help
beginners understand basic program structure at the lower levels
of abstraction and understanding.

Another relevant theory for editor design is that of cognitive load.
Cognitive load theory has been used in user interface design [22]
to explain task performance, and also in computing education [16]
to explain human behavior. Various eye-tracking metrics have been
found to correspond to cognitive load [15], suggesting that we could
observe any interface differences in cognitive load via eye-tracking.

We suggest that it may be unnecessary to come up with detailed
theories as to why different visual decorations will enhance read-
ability if there is no convincing evidence that visual decorations
enhance readability. Our aim is that this study will aid in determin-
ing whether there is an effect of the different designs, rather than
building on a specific theory of highlighting and readability.

2.2 Role of scope highlighting in code
understanding

A few studies have investigated the effect of editor highlighting
on program comprehension, including eye tracking. Beelders and
du Plessis [8] investigated the role of code syntax highlighting, and
found that the presence or lack of syntax highlighting does not
significantly impact programmers’ reading behavior as measured
by eye tracking. Hannebauer et al. [19] found the same result in
their study, looking only at task performance and not eye tracking.
This is despite syntax highlighting being ubiquitous in program
editing for many decades. (Curiously, this mirrors a parallel issue
of font selection for general text readability; although there are
various design guidelines on when to use serif or sans serif fonts,
many studies find no effect of font serifs, or lack thereof [2, 31, 45].)

Eye tracking study assessing impact of background styling on novices’ code understanding ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

Figure 1: The three interfaces, all showing the same program code. Top-left is Java No scope highlight (JN), which has only
syntax highlighting and no scope highlighting. Top-right is Java Highlight (JH), which has syntax highlighting and scope
highlighting. Bottom is Stride (S) which has minimal syntax highlighting, scope highlighting, and, in contrast to Java, no
semi-colons or curly brackets.

Talsma et al. [44] explored the impact of the scope highlighting
on novice programmers’ reading behavior (using eye tracking), and
concluded that code comprehension is not affected by the scope
highlighting, while the reading pattern is. However, their study
used a single hybrid mode of highlighting: a view with Stride’s

font choice and minimal syntax highlighting, scope highlighting
and curly brackets and semi-colons. We expand on this to examine
three interfaces: Java without scope highlighting, Java with scope
highlighting (but no other changes), and Stride with its font choice,
minimal syntax highlighting, but no curly brackets or semi-colons.

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj Jensen, and Michael Kölling

This allows us to investigate finer-grained differences in the design
elements. In addition, we used a larger sample size (7 participants
in their study compared to 62 in ours).

Weintrop et al. [48] conducted a paper-based study comparing
an exam with two different code presentations. One is a plain text
presentation with no highlighting of any kind. The other adds a
block-based form of scope highlighting, with rectangles and colored
backgrounds drawn to indicate scope, both of structural scopes (as
in our scope highlighting conditions) but also to indicate bracket-
ing within expressions: drawing boxes around, for example, the if
condition or bracketed items therein. They found a difference in
performance on the exam between these two conditions, with the
scope highlighting improving performance.

Stride has been compared to Java in two existing studies of code
writing. Price et al. [32] examined the differences in a US school
setting and found some differences in the rate of task completion,
with Stride being faster. Brown et al. [11] conducted a study in-
volving multiple different UK schools and found no interface effect
in a set of code writing tasks, either in task completion time or
understanding of object orientation.

In summary, there is reason to believe that there could be a
difference in program comprehension based on scope highlighting,
but the existing evidence (comprising both controlled laboratory
studies and observational school studies) shows a mixture of effects.

2.3 Code reading task choice
In order to conduct a study of program comprehension with differ-
ent interfaces, we needed to provide our participants with program
comprehension tasks to perform. We were informed by many prior
studies involving program comprehension, especially in Java.

Busjahn et al. [13] presented the participants six short Java pro-
grams and asked them one of three questions: to write a summary
of the code, to estimate the value of a variable after the program
execution or answer an algorithm-related multiple choice question
(MCQ). Writing a summary is another activity chosen by Abid et al.
[1], restricted to some reasonably long content methods randomly
chosen in various open-source Java systems. They were allowed to
open the entire source code of the projects and to see the methods
while writing their answers. Bednarik and Tukiainen [6] presented
their participants with a set of three short to medium sized Java
programs (each program being self-contained in a Java class). They
obfuscated the methods and variables of the programs and asked
participants to explain what the programs did. In a study comparing
the code reading comprehension between novices with and without
dyslexia, McChesney and Bond [30] created an open data set in
which stimuli consist of three very short to short Java code snippets,
that participants had to summarize.

To study how plan-schemata and composition of code affect the
code comprehension, Kather et al. [26] designed a set of theoretical-
driven short programs, but they targeted programmers with enough
literacy to no longer be considered novices. Six short C programs
were presented to students by Uwano et al. [46]; they discarded any
code decoration from their stimuli (i.e. comments) but introduced
each small program in the same manner to the reviewers before
they read the code. Participants were left aware that each program
included a small logical defect that had to be identified. Bednarik

and Tukiainen [7] showed their participants three programs con-
taining a few non-syntactic errors to study debugging strategies.
Participants did not know how many bugs were in the programs
and were given limited time to propose corrections (presumably
orally). Similarly, Sharif et al. [38] studied the role of scan time in
debugging by asking participants to review four Java code snippets
containing a bug. Bug finding activities on a larger scale project
(JabRef) have also been used to study gaze behaviour in change
tasks [27] – the participants of the study were both experts and
students, and the study focused on the action of fixing the bug.

While task code complexity should match the participants’ abil-
ity, we favored stimuli that show full size Java class code, in the
context of a Java application. This choice better reflects program-
ming projects designed for real-life educative purposes. We devised
a set of tasks, that required either summarization or bug finding.
As these types of task are commonly found in code understanding
research literature, we decided to devise a study with both. Code
understanding and bug finding are also, again, realistic activities
that students perform during their programming education.

2.4 Eye tracking
Eye tracking has gained interest for research in different fields
partly thanks to the improvement of available technology. It is of-
ten used to simply infer what users look at [52], but it also allows
researchers to understand better the cognitive load involved in the
users’ activities, reading and information processing in particu-
lar [15, 33]. Therefore, eye-tracking is a relevant technology to the
research on code reading activities [6]. Comprehensive guides on
conducting eye tracking studies were used as a reference for our
method and metrics [23, 37].

2.4.1 Eye-tracking metrics. The principal eye movements extracted
from raw gaze data points are fixations and saccades [25]. Fixations
strongly indicate attention, and therefore associated metrics are
often exploited in code-reading research analysis: fixation count [1,
8, 30, 39, 44], fixation duration [1, 8, 12, 13, 26, 39, 44], fixation
rate [39], and fixation location or heatmaps [3, 13, 30, 44]. More
advanced metrics include saccade length [12], scan time [8, 38],
block sequence diagram [44], and sparse matrix [6].

In this paper, we use the linearity metrics presented by Busjahn
et al. [12] as well as the standard fixation counts and durations in our
analysis of RQ3. The linearitymetrics they validated include saccade
length (Euclidean distance between two pairwise fixations), vertical
and horizontal reading behavior, regressions, and line coverage.
Most eye-tracking studies predefine the stimuli’s areas of interests
(AOI), which in the context of code reading matches chunks of code.
We define chunks in our tasks to be contiguous logically related
lines of code. They could represent beacons [49] that are understood
as a whole and not necessarily at the individual line level.

2.4.2 Eye tracking tools. The preferred eye-tracking devices re-
searchers use are infrared remote eye trackers positioned below the
monitor. Such devices offer a good compromise between data qual-
ity and ease of usage – being unobtrusive and easy to set up for each
participant. The frequency of an eye tracker is a key parameter to
consider based on the type of stimuli the research work focuses on.
Typical frequency values found in literature can vary significantly:

Eye tracking study assessing impact of background styling on novices’ code understanding ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

50 Hz [6], 60 Hz [1, 3, 38, 39, 44], 120 Hz [12, 13, 30], 300 Hz [8, 26].
Andersson et al. [4] do not recommend sampling data on the lower
frequency range for reading activities. In a compromise between
sampling quality, technical integration and cost, we worked with
an infrared remote eye-tracker sampling at 120 Hz.

Although manufacturers can provide in-the-box solutions to run
the calibration and tracking sessions, they rely on a stimulus which
has fixed dimensions (for example, a fixed-size portion of code).
This does not reflect well the real case scenarios of code reading
activities when readers often need to scroll through code text that
spans across the monitor’s height or switch between several files
to grasp the content of a program. iTrace (https://www.i-Trace.
org) is eye tracking infrastructure that was specifically designed
to address these code reading and mapping related issues [18, 36].
Ogama by Voßkühler et al. [47] permits a recording and an analysis
of gaze and mouse data with regards to defined static images or
slideshows. Crescent has been developed by Uwano et al. [46] to
facilitate the estimation of code lines correspondence to points of
gaze. Although Crescent made a significant step in designing tools
for the gaze analysis of code reviews by including mechanisms
to handle scrolling and providing sensible information (lines of
code), it lacks the granularity to retrieve the language keywords
and possibility to use other IDEs for research studies.

Since iTrace gathers the necessary features we need for both the
tracking and analysis of the gaze data on code stimuli, we extended
it for our study. iTrace also comes with a post-processing toolkit [9]
that we used to generate fixations.

3 METHOD
This section presents the details of our method. This study was
approved by the research ethics boards at King’s College London
(reference LRS/DP-20/21-25453) and the University of Nebraska-
Lincoln (IRB# 20211221356EP).

3.1 Pre-registration
The method and materials for this study were voluntarily pre-
registered on the Open Science Foundation (OSF) before the data
collection began. This can be viewed at https://osf.io/zws7f/. The
following changes were made since the pre-registration:

• We changed our use of simple code categories for analysing
gaze, to more detailed and classical eye-tracking metrics.

• We added analysis of task correctness, alongside the planned
analysis of time to record correct answers.

• In the pre-registration we stated “we are unlikely to have
enough correct answers for a 3x12 ANOVA” (and planned a
simpler analysis) but as it turned out we did, so we performed
the ANOVA analysis.

A separate repository at https://osf.io/3uprw/ contains all the
details of the results.

3.2 Conditions and Design
We are interested in the impact of three code presentation condi-
tions: no background scope highlighting (the editor background
is plain), scope-highlighting and frames. The first 2 conditions are
applied to code written in Java. The last one, frames, is applied to

a Java-equivalent language: Stride1. In the context of this study,
the only differences between frame-based editing and text-editing
are the visual aspects. Other aspects of frame-based editing (input
and navigation aspects) do not impact this study as all the tasks
are purely about reading code, not editing it. Figures 2–4 show
some tasks and code snippets under each condition (respectively,
no highlighting, scope-highlighting, frames).

3.3 Activities
3.3.1 Code Reading tasks. As explained earlier in subsection 2.3,
code reading activities usually involve two types of tasks: code
summarizing and bug finding. For our study, we designed tasks
for these two types of activities and sub-categorized each type. For
summarizing, we sub-categorized the type of tasks depending on the
scope of the targeted: class-span or method-span. For bug finding,
we sub-categorized the type of tasks depending on the nature of the
bug: functional (i.e. the code itself is logically sound but does not
generate the intended functional behavior) or code-related/logical
(i.e. the code is logically not sound, such as an infinite loop). Figures
2-5 illustrate a task example for each aforementioned type.

All tasks were in the form of a question. The participants replied
orally and only by reading the code; no modification was involved.
We did not set a time limit to answer the question but moved to the
next task when participants took longer than expected to answer
and seemed stuck. We instructed the participants to answer the
question in natural language verbally. We forewarned them that if
an answer were too generic (for example, replying “The result is
wrong.” without explanation), we would ask for more details.

Figure 2: Code snippet for a code-scope summarizing task,
with the condition “no scope highlighting” (JN)

We designed 12 tasks, so that each task category is associated
with each condition. We randomly split the 12 tasks across 3 differ-
ent projects since typical novice programmer’s projects are small
1https://stride-lang.net/

https://www.i-Trace.org
https://www.i-Trace.org
https://osf.io/zws7f/
https://osf.io/3uprw/
https://stride-lang.net/

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj Jensen, and Michael Kölling

Figure 3: Code snippet for a method-scope summarizing task,
with the condition “scope highlighting” (JH)

Figure 4: Code snippet for a functional bug finding task, in
the Stride condition (S). The question asked was “The images
produced with the Threshold filter are almost always very
bright beyond expectation. Can you find where the issue
comes from, in the class ThresholdFilter?”

Figure 5: Code snippet for a logical/code bug finding task,
with the condition “scope highlighting” (JH). The question
asked is “Can you identify the bug in the method apply?”

and participants to the study may find working with multiple
projects more interesting and stimulating than a large single project.
All three projects are Java or Java-like projects, and they were writ-
ten using BlueJ2 (which handles both Java and Stride).

The first project, ImageViewer, implemented a simple graph-
ical AWT/Swing Java desktop program that allows the user to
load an image file, and apply filters to that image. The second and
third projects (SpaceGame and WaveLab) were the source code of a
Greenfoot scenario3. The second project, SpaceGame, was adapted
from a space shooting game scenario available on the Greenfoot
website4. The last project, WaveLab, an interactive wave simulator,

2https://bluej.org
3Greenfoot is an interactive programming environment. A scenario, in Greenfoot, is the
content fed to this environment (a game for example). From the programmer’s point
of view, the main parts to implement are the world and the actors that evolve in the
world. Details about Greenfoot can be found at https://www.greenfoot.org/overview
4https://www.greenfoot.org/scenarios/27256.

was adapted from the Greenfoot book associated projects5. Com-
ments in all the projects’ source code were preserved, except for
the methods that needed to be summarized by the participants.

The distribution of the tasks is summarized in Table 1. We did
not fully balance the ordering of tasks among all participants for
practical reasons (it would require at least 12! = 479 001 600 partic-
ipants without grouping by project), so the only balanced variable
was the condition: all participants completed the tasks in the same
order, with a condition depending on one of the 3 groups they were
assigned to.

3.3.2 Post-study Questionnaire & Demographics. In order to un-
derstand how the different tasks and conditions of the study were
perceived by the participants, we devised an online questionnaire
asking the participants their opinions of the study and the condi-
tions.We asked for demographics, consisting of the standard profile-
related, education-related and Java/Stride experience-related ques-
tions. Demographics data was collected together with the post-hoc
questionnaire. We preferred keeping the demographics’ questions
after the data collection to avoid the influence of these questions
over the participants’ performance and state-of-mind during the
data collection. It is possible that being asked gender or ethnicity
before the study may invoke stereotype threats [41] or similar prim-
ing effects [24]. The combined questionnaire details are available
in the aforementioned OSF pre-registration repository.

3.4 Apparatus
3.4.1 Hardware. Our setup comprised a monitor (24.1”, 60Hz) on
which an eye-tracker is attached (Tobii Eye Fusion Pro, 120Hz,
mounted in the usual configuration below the display). Both moni-
tor and eye tracker are connected to a laptop (running Windows 10
Enterprise 21H2 (x64), Intel Core i7-8665U CPU @ 1.9GHz, RAM
16 GB). The display resolution was set to 1920x1200, and the scal-
ing6 was set to 100%. As the data collection relies on a code read-
ing activity, only the mouse was available to the participant. The
session was recorded by 2 webcams (Full HD 1080p/30fps), con-
nected to a separate dedicated laptop. One webcam was recording
the participant’s face, the other was recording the monitor, from
an “over-the-shoulder” control view. Both audio and video was
recorded.

3.4.2 Software. al The projects were used with BlueJ v.5.0.3. The
eye-tracking calibration and data recording was run by iTrace
v.0.2.0, eye tracking infrastructure designed to specifically man-
age the mapping between gaze points and the code editor areas
of interest [18, 36]. In order to allow BlueJ to comply with iTrace
data collection, we developed a BlueJ extension to iTrace namely,
iTrace-BlueJ. We used OBS Studio 27.2.4 for recording the videos
from the webcam.

3.5 Study Protocol
In both investigating institutions, the apparatus was arranged in a
similar fashion where the investigators were not in the participants’
field of view, once the study effectively started (after consent, and
after starting the video-recording). This detail is important as it

5The book’s projects are available at https://www.greenfoot.org/book/.
6On Windows display settings, the scale of the text, apps and other items.

https://bluej.org
https://www.greenfoot.org/overview
https://www.greenfoot.org/scenarios/27256
https://www.greenfoot.org/book/

Eye tracking study assessing impact of background styling on novices’ code understanding ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

Table 1: Task types and conditions distribution

Project Task # Task Type(1)
Condition(2)

Group 1 Group 2 Group 3

ImageViewer

1 SS JH S JN
2 SS JN JH S
3 FB S JN JH
4 CB JH S JN

SpaceGame

5 SS S JN JH
6 CS JH S JN
7 FB JN JH S
8 CB S JN JH

WaveLab

9 CS S JN JH
10 CB JN JH S
11 FB JH S JN
12 CS JN JH S

(1) SS: method-scope summarizing, CS: code-scope summarizing,
(1) CB: logical/code bug, FB: functional bug
(2) JN: no scope highlighting, JH: scope highlighting, S: frames

helped prevent the participants’ natural inclination: to turn toward
the investigators to answer the questions. We explicitly explained
this to the participants and instructed them to avoid moving too
much (to avoid disrupting the eye tracker) but to keep a natural
sitting posture. We could adjust the distance between the monitor
and the seat and the height of the monitor, but we made sure the
chair had no wheels to avoid movement during the data collection.

A short introduction to BlueJ and the three conditions (no scope
highlighting, scope highlighting and frames) was given to the par-
ticipants. For Stride, we also introduced the differences to Java. We
then gave a description of the four types of tasks (cf. Section 3.3.1),
with examples, to the participants. It was followed by a warm-
up example without eye-tracking. The warm-up project is a Java
text command-based game, World of Zuul, opened in BlueJ. The
warm-up activity consisted of two tasks: a code-span summarizing
task (with the frames condition) and a functional bug finding task
(with the scope-highlighting condition). Once the warm-up activ-
ity was completed, we gave a very brief presentation of the three
projects and the number of tasks used for the data collection. For
each project (ImageViewer, SpaceGame and WaveLab), we showed
a snapshot of the project’s UI and explaining its purpose, as well
the core concepts of the Greenfoot environment for projects 2 and
3, then completed the four tasks.

3.6 Data Collection
3.6.1 Content. The data collected during the study can be split
into 3 groups: gaze-related, answer-related and evaluation-related.
Gaze data comprises the aggregation of timestamped raw gaze
points (generated by the eye-tracker) with the matching code to-
ken (provided by iTrace-BlueJ). The latter is primarily word-level:
iTrace-BlueJ is able to associate the point of gaze with a specific
code token (a word and its role (syntactic category), for example,
an operator) [36]. When gaze is not detected against a word, iTrace-
BlueJ marks the area of interest as the ”background”. While in Java
this notion applies to the whole document in the BlueJ editor, with

Stride this notion is more precise, the “background” is relative to a
frame.

During the study, we also recorded videos to enable the verifi-
cation of the participants’ activity during the completion of the
tasks, and the evaluation of their answers’ correctness and speed.
The evaluation-related data was collected via the post-hoc ques-
tionnaire.

3.6.2 Task answers correctness and duration marking. The videos
helped us to assess 1) the duration taken for a participant to answer
and 2) categorize the answer given by a participant for each task.
Each screen-recording video has been separately reviewed by pairs
formed from three reviewers. After a few individual trials, the
reviewers shared their feedback to set up guidelines indicating how
to mark the videos, and ensure consistency for all reviews. For each
task, we defined:

• the answer start time as the video time when the investigator
started to formulate the question;

• the answer end time as the video time when the participant
concluded their answer; and

• the answer correctness category, defined as one of:
– Y (correct and detailed answer),
– C (almost correct and detailed answer),
– P (partially correct and/or partially detailed answer),
– N (incorrect answer), or
– X (no answer given or do not know how to answer).

As the different investigators did not consistently ask for details
of the inner methods for tasks 6 and 12 while running the study, we
did not require this explanation for the task to be marked correct.
However, we considered the participant needed to mention the call
to an inner method to make a correct answer. For task 10, many
participants suspected the bug to be that the index variable (for the
array) did not start at 0. Even though this was not the intended bug
(which was that the index would overflow beyond the bounds of
the array), we considered this answer as partially correct because
of the ambiguity of the program.

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj Jensen, and Michael Kölling

Once all videos had been separately reviewed, the reviewers
compared their markings to identify and resolve marking conflicts
- different correctness category, or a time difference that exceeded
10 seconds, and produce the final unified reviews. For time-related
markings, the unified reviews consisted of the average of the sep-
arated time markings, unless manually corrected during conflict
resolution.

3.6.3 Participants. Participants were recruited at both King’s Col-
lege London in the UK, and University of Nebraska-Lincoln in the
USA. For both institutions, the participants were students who had
taken Java programming classes and were still relatively novices in
Java programming (between 1 term to 2 years passed since taking
their Java course). In order to incentivize participants, participa-
tion in the study (regardless of completion) was rewarded with an
Amazon gift card equivalent to around 10–15 USD. Recruitment
was done within the investigating universities via posters, flyers,
oral calls for participation in lectures, and email communication
on mailing lists.

3.6.4 Areas of Interest. Before analyzing the collected gaze data,
two authors collaboratively defined the areas of interest (AOIs) for
each task. We only defined the AOIs on the relevant chunks of code
of the class mentioned by the task by extracting the key parts of
the code in line with the expected answer of the task. Chunks are
continuous sets of lines that are logically related. Therefore, the
AOIs were usually limited to the chunks of the class methods that
needed to be summarized (for summarization tasks) or where the
bug occurred (for bug finding tasks). Whenever any other chunk of
the code (e.g. fields, other method) was particularly important for
the task completion, they were also considered as AOIs. The AOIs
were delimited by a start / end lines for Java, and the equivalent in
Stride. Note that the code chunks can be nested. We decided to use
this chunking method compared to looking at individual line level
analysis because it is more intuitive and is based on the concept of
beacons [20, 21, 49] (cohesive chunks that make sense together as
a whole).

4 RESULTS
4.1 Participation
Combined between the two institutions, 62 participants took part in
the study (40 at University of Nebraska-Lincoln, 22 at King’s College
London, average age 21.2 ± 3.4). We had to turn down 3 other
applicants for whom eye tracking could not be performed due to
several failed attempts in calibrating the eye tracker. All participants
were students proficient in English, but English was identified as a
native language for only 36 [58.1%] participants. Table 2 summarizes
the other participants’ demographic information.

Java and BlueJ are used differently at the two institutions. Table 3
shows how participants reported their experience regarding both
Java and BlueJ. Combined experience reports between the two in-
stitutions indicate that roughly half the participants had experience
with BlueJ for programming in Java. However, only King’s Col-
lege London (and not University of Nebraska-Lincoln) uses BlueJ
to teach Java courses in its Bachelor level curriculum. Therefore,
participants who had not used BlueJ to program in Java before
were rare at King’s College London (3 participants, 13.6% of the

Table 2: Participant demographics

Gender
Female 18 (29.0%)
Male 42 (67.7%)
Other / no answer 2 (3.2%)
Ethnicity
Arab / Middle Eastern 1 (1.6%)
Asian 24 (38.7%)
Hispanic / Latino 1 (1.6%)
Mixed / Multiple Ethnic Groups 4 (6.5%)
White / Caucasian 31 (50%)
No answer 1 (1.6%)
Education
Bachelors / BSc 51 (82.3%)

year 1 1 (1.6%)
year 2 25 (40.3%)
year 3 20 (32.3%)
year 4 5 (8.1%)

Masters / MSc / MSci 6 (9.7%)
PhD 5 (8.1%)
Vision conditions
Color blindness (red-green) 2 (3.2%)
Visual impairment 10 (16.1%)

Table 3: Participants’ experience with Java and BlueJ

Java (where?)
In course 36 (58.1%)
Outside course 5 (8.1%)
Both 21 (33.9%)
Java (how long?)
Less than 1 year 16 (25.8%)
Between 1 and 2 years 32 (51.6%)
More than 2 years 14 (22.6%)
BlueJ (used for Java?)
Yes 26 (41.9%)
No 36 (58.1%)
BlueJ (used for Stride?)
Yes 1 (1.6%)
No 61 (98.4%)

institution), while they conversely were the majority at University
of Nebraska-Lincoln (33 participants, 82.5% of the institution).

4.2 Dataset Errata
As often happens in empirical studies, the actual data set obtained
during the study differs from the expected “theoretical” design due
to human error. In this section, we transparently report such issues
with our study.

Amistake in theWaveLab source code for the group 3 (cf. Table 1)
caused the condition JH to be presented instead of the intended JN
condition for task 11. For 2 participants assigned to group 3, during
the study, the investigator did not toggle the BlueJ eye tracking

Eye tracking study assessing impact of background styling on novices’ code understanding ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

Table 4: The mean correctness score by interface, after ex-
cluding task 11 (which has no JN data).

Interface Average
JN 2.23
JH 2.31
S 2.18

correctly for one of the projects (ImageViewer, SpaceGame). Conse-
quently, for those projects the eye tracking data is not available, and
the condition JN has also been rendered as JH in the corresponding
projects. These mistakes have taken into account in the analysis
of the conditions. Across all 62 participants, we have the following
condition distribution: 36.4% JH, 33.3% S and 30.2% JN (instead of
representing exactly a third for each condition).

For 2 participants, the video recordings were not started properly,
during the whole session for the first participant (resulting in no
video marking at all for task answer correctness and duration),
and later in one of the projects for the second (resulting in no
video marking for answer correctness (task 9) and duration (tasks 9
and 10)). For one participant, two tasks in the middle project were
accidentally swapped in their order.

4.3 RQ1 and RQ2 Results: Task Correctness and
Duration

4.3.1 Conflict resolution. The correctness and duration of task an-
swers were marked based on video examination as explained in
Section 3.6.2. Figures 6 and 7 illustrate the percentage of conflicts for
each task, respectively for the correctness category and the timings.
The nature of the tasks may explain why there were often more
conflicts in resolving the correctness of the answers for the summa-
rization tasks than for the bug finding tasks: the explanations given
by the participants about a method, and the interpretation made by
the investigator is more subjective than bug finding. Not surpris-
ingly, there were very little start time conflicts since the questions
were always asked in the same manner (most start time conflicts
were due to manual marking mistakes). Overall, time marking was
more consistent than correctness marking, as it has less room for
the investigators’ interpretation. The conflicts were resolved in a
series of long meetings between the three investigators. Most were
found to be caused by a small number of systemic disagreements
or misunderstandings of the agreed categorization.

4.3.2 Correctness analysis. We analyzed the correctness of the
answers to each task. We transformed the category to a numerical
scale as follows:

• Incorrect (N) and absent (X) answers became 0.
• Partially correct (P) answers became 1.
• Close to correct (C) answers became 2.
• Correct (Y) answers became 3.

The intuition behind our results can be explained from the simple
averages shown in Table 4. Firstly, there is a ceiling effect; on a scale
of 0–3, an average above 2 reflects that a large proportion (in fact,
66.0%) of the grades are 3, the maximum. Secondly, the interfaces
have little difference, as we will see in the statistical results. These
effects are also apparent in Figure 8.

Table 5: Themedian answer time across all tasks, by interface,
after excluding task 11 (which has no JN data).

Interface Median answer time (seconds)
JN 95
JH 96
S 95

Our core analysis is a two-way repeated measures ANOVA with
dependent variable grade, and independent variables of Interface
(3 levels) and Task (11 levels, after excluding Task 11). Due to the
ceiling effect in grade the data is not normally distributed as the
test assumes, but there is no non-parametric equivalent to a two-
way ANOVA so we proceeded, with caution. This analysis showed
no effect of Interface (𝐹 (2, 637) = 0.568, 𝑝 = 0.567), which is our
key research question. It did show an uninteresting effect of Task
(𝐹 (10, 637) = 22.725, 𝑝 < 0.001), indicating that there is a difference
in difficulty between tasks. It also showed an interaction between
Interface and Task (𝐹 (20, 637) = 1.675, 𝑝 = 0.033), meaning that
the effect of Interface differs by Task. Intuitively, however, if the
averages are all the same for the interfaces then any difference in a
particular task (Stride is better for this task!) is likely to be balanced
out by the opposite effect in other tasks (Stride is worse at this task!).
Nevertheless, we conducted follow-up one-way non-parametric
ANOVAs (using the Kruskal-Wallis test) for each task, applying FDR
correction [10] to the 𝑝-values. None of these follow-up analyses
were significant.

The ceiling effect in grade is a potential problem, sowe conducted
a second exploratory analysis. We excluded all tasks where the
median performance was 3 (i.e. where over half the responses were
completely correct), which left us with only tasks 2, 7, and 10. This
data was still not normal. The analysis again showed no effect
of Interface (𝐹 (2, 174) = 0.175, 𝑝 = 0.840), but again an effect of
Task (𝐹 (2, 174) = 10.411, 𝑝 < 0.001) and an interaction (𝐹 (4, 174) =
2.643, 𝑝 = 0.035). The interaction was not followed up again, as
these follow-up tests were already conducted as part of the previous
follow-up tests that were not significant.

4.3.3 Timing analysis. We analyzed the time taken to complete an
answer. We only included answers that were correct (Y) or almost
correct (C), as we felt it was uninformative how long participants
took to reach an incorrect answer (and incorrect answers could be
affected by a potential speed-accuracy trade-off). The times taken
are in seconds and are timed from the beginning of the experi-
menter’s question to the end of the participant speaking. Naturally,
some participants will give longer answers than others in an open
answer, but since all participants completed all tasks and we are
only interested in differences by Interface, this should balance out
across the condition allocation.

The times taken are shown as box-plots split by Task and Inter-
face in Figure 9. For intuition, the median times split by interface
are shown in Table 5 which shows that the times carry the same
pattern as the correctness: no difference between the blocks.

This is reflected in the results of our core timing analysis, which
is again a two-way repeated measures ANOVAwith dependent vari-
able time, and independent variables of Interface (3 levels) and Task
(11 levels, after excluding Task 11). The analysis showed no effect of

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj Jensen, and Michael Kölling

Figure 6: Percentage of answer correctness category evaluation conflicts for each task, per type.

Figure 7: Percentage of answer start/end time evaluation conflicts for each task, per type.

Interface (𝐹 (2, 473) = 0.089, 𝑝 = 0.915). It showed an uninteresting
effect of Task (𝐹 (10, 473) = 16.381, 𝑝 < 0.001) indicating that there
is a difference in time taken between tasks. There was no interaction
between Interface and Task (𝐹 (20, 473) = 0.537, 𝑝 = 0.951).

4.4 Participant Perception of Background
Differences

Following the code-reading activities, we asked the participants to
give written feedback on the different background styles (i.e. JN, JH
and S conditions mentioned in Table 1) they encountered through-
out the tasks. The majority of participants indicated a preference
for Java with scope highlighting and/or Stride - or a discomfort
when there was no highlighting (42 [67.7%]). Only 6 participants
[9.7%] indicated a preference for the Java without scope highlight-
ing condition, blaming the impact on cluttering the visual interface
with the colors, or familiarity with such a visual style. A small set
of participants (14 [22.6%]) did not find any particular differences
between the different conditions or did not express an answer that
we could interpret. It is worth noting that a few participants men-
tioned they needed a bit of time to get used to Stride (9 [14.5%]) but
none of them considered the Stride condition to be the worst.

4.5 RQ3 Results: Eye Movement Data
We present analysis of the eye tracking data in two different forms
in the following subsections. The first are standard metrics we
defined in subsubsection 2.4.1 which show overall eye differences
in the different conditions. The second is a timeline visualization of
the scanpaths (a directed path of fixations) between areas of interest
in the code, indicating how participants were navigating the code
while solving the tasks.

4.5.1 Eye Movement Metrics. Table 6 shows the results of pair-
wise 𝑡-tests for each metric [12] and each pair of conditions. These
are corrected within each row for multiple comparisons using the
Benjamini-Hochberg False Discovery Rate (FDR) procedure [10]
with a base 𝛼 = 0.05. In practical terms, this means the lowest
𝑝-value in each row is significant if it is beneath 1

3 × 0.05; if so,
the second lowest 𝑝-value is significant if it is beneath 2

3 × 0.05; if
so, the highest 𝑝-value is significant if it is beneath 0.05. Figure 10
shows the fixation counts and durations for each condition which
are normalized for the length of time it took for each participant
to complete each task. The statistical tests in Table 6 confirm that
there is a significant difference between Stride and each of the other
two Java interfaces for fixation counts for all tasks (𝑝 < 0.001). The
differences between JH and Stride were very large throughout all

Eye tracking study assessing impact of background styling on novices’ code understanding ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

Figure 8: The counts of each grade, split by task (grid square) and by interface (the three bars within each square). More answers
in the Y (red) and C (orange) categories indicate better performance.

tasks (Cohen’s 𝑑 = 1.403) and large between JN and Stride (Cohen’s
𝑑 = 1.171). For fixation duration, there is a medium effect size be-
tween JN and JH (Cohen’s 𝑑 = -0.780) as well as between JH and
Stride (Cohen’s 𝑑 = 0.549). A small effect was observed between JN
and Stride (Cohen’s 𝑑 = -0.496).

Figure 11 shows the results of gaze-based measures of linear-
ity split by condition. These metrics are derived from the met-
rics used by Busjahn et al. [12] to measure the level of linearity
in reading source code. Out of these metrics, there were shorter
saccade lengths across all tasks in Stride with large effect than
JH (𝑝 < 0.001, Cohen’s 𝑑 = 0.852) and medium effect with JN
(𝑝 < 0.001, Cohen’s 𝑑 = 0.606). When compared to JN, saccade
lengths for tasks in JH were longer with a small effect (𝑝<0.021,
Cohen’s 𝑑 = −0.242). Vertical next text results show that gazes
are less likely to move forward one line in Stride with a huge effect
compared to JH (𝑝 < 0.001, Cohen’s 𝑑 = 2.145) and JN (𝑝 < 0.001,
Cohen’s 𝑑 = 2.401). Vertical later text results show that gazes
are less likely to move forward multiple lines in Stride with a very
large effect compared to JH (𝑝 < 0.001, Cohen’s 𝑑 = 1.742) and
JN (𝑝 < 0.001, Cohen’s 𝑑 = 1.935). A small effect was observed in
JH compared to JN (𝑝 = 0.017, Cohen’s 𝑑 = 0.293) Gazes are less
likely to move forward horizontally within a line (horizontal later
text) in Stride for bug fixing tasks where there was a small effect
compared to JH (𝑝 = 0.002, Cohen’s 𝑑 = 0.470). Regression rate
results show that gazes are less likely to move backwards in Stride
with a small effect compared to JH (𝑝 = 0.005, Cohen’s 𝑑 = 0.349).

Line regression rate results show that gazes are more likely to
move backwards horizontally within a line in Stride with a small
effect size when comparing against JH (𝑝 = 0.025, Cohen’s 𝑑 =

−0.381) and a medium effect against JN (𝑝 < 0.001, Cohen’s 𝑑 =

−0.739). Comparing JH against JN has a small effect size (𝑝 = 0.022,
Cohen’s 𝑑 = −0.306). Line coverage shows that there was a lower
percentage of total lines in Stride were being looked at. This effect
was huge when Stride was compared against JH (𝑝 < 0.001, Cohen’s
𝑑 = 2.165). On the other hand, there was a higher percentage of
total lines in JH that were being looked at compared to JN with a
very large effect (𝑝 < 0.001, Cohen’s 𝑑 = −1.487).

Based on these results, participants are shown to navigate around
elements of the code less when reading code written in the Stride
language, perhaps spending more time being focused around the
relevant areas of the task.

4.5.2 Timeline Analysis. To determine which parts of the code a
participant has been looking at over time, we visualized the scan
patterns of the participants by generating augmented scarf plots us-
ing the Alpscarf [51] web application. We first plotted the fixations
on the different key parts of the task’s source code over the entire
task duration with the duration-focus and non-normalized option
used to visualize the amount of time each participant spent in AOIs.
These settings will provide an easier-to-understand visualization of
the movement of fixations over time compared to simply analyzing
the distribution of how many fixations there were on each AOI as
shown in Table 7. However, because one participant may spend
more or less time completing a task than others, the normalization
of the plot will allow for better viewing of the transitions. The
normalized plots for all tasks are available in the results replication
package.

We chose a lengthy bug-fixing task that many participants had
difficulty completing for this analysis. WelcomeWorld was a task

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj Jensen, and Michael Kölling

Figure 9: The times taken to give correct (Y) or close to correct (C) answers to the 12 tasks, split by Interface. Smaller time values
indicate a faster answer, so lower on the Y axis is better. Each box shows the lower quartile, median, and upper quartile of the
data. The lower/upper vertical whiskers extend to the smallest/largest value within -1.5/+1.5 respectively of the inter-quartile
range (i.e. height of the box). All other points beyond this range are plotted individually. The width of each plot is proportional
to the amount of data (i.e. the amount of C or Y answers to a particular question), which is noticeably lower for the harder
tasks of task 7 (n=22) and task 10 (n=18) compared to the median of n=52.

Figure 10: Fixation counts and fixation durations across the tasks, for each condition. The box plot whiskers show the minimum
and maximum, with the boxes showing the lower/upper quartiles and the median. Because each participant took a different
amount of time to finish the task, we report on the fixation metrics per sec to make a fair comparison.

Eye tracking study assessing impact of background styling on novices’ code understanding ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

Figure 11: Distribution of gaze-based measures by condition, where JH is Java Highlighting, JN is Java No Highlighting, and S is
Stride. Each box represents the individual measures.

Table 6: 2-tailed 𝑡-Test 𝑝-values (top numbers) and effect sizes
(bottom numbers in parenthesis) between task conditions for
each fixation metric. Degrees of freedom is 61. The tests are
corrected for multiple comparison on a per-row basis using
the False Discovery Rate procedure. Significant comparisons
are marked with an asterisk * after the p-value.

Metric \ Comparison JN vs JH JN vs S JH vs S

Fixation Count
0.840
(-0.019)

<0.001*
(1.171)

<0.001*
(1.403)

Fixation Duration
<0.001*
(-0.780)

0.002*
(-0.496)

<0.001*
(0.549)

Saccade Length
0.021*
(-0.242)

<0.001*
(0.606)

<0.001*
(0.852)

Vertical Next Text
0.209
(0.152)

<0.001*
(2.401)

<0.001*
(2.145)

Vertical Later Text
0.017*
(0.293)

<0.001*
(1.935)

<0.001*
(1.742)

Horizontal Later Text
0.143
(-0.168)

0.112
(0.236)

0.002*
(0.470)

Regression Rate
0.200
(-0.130)

0.102
(0.210)

0.005*
(0.349)

Line Regression
0.022*
(-0.306)

<0.001*
(-0.739)

0.025*
(-0.381)

Line Coverage
<0.001*
(-1.487)

0.375
(0.182)

<0.001*
(2.165)

that was the most difficult for participants due to its length and am-
biguity in method names. A screenshot of WelcomeWorld’s buggy
method and ambiguous class is shown in Figure 12, with each of
the rectangles representing key parts that were used as AOIs within
the displayed code.

We use the eye tracking data for this task as shown in Figure 13
for participants that completed the task in Java with highlighting,
Figure 14 for participants that completed the task in Java with
no highlighting, and Figure 15 for completing the task in Stride.
Participants that completed the task correctly or mostly correct
(Y, C) are colored green, while partial answers as black (P), and

incorrect or no answers are colored red (N, X). These markings are
visible on the y-axes near each participant’s timeline.

When looking at the plots, one notable difference between the
plots of participants that correctly completed the task and those
that answered incorrectly is the number of fixations on the lines
with the bug when a participant looks at the code, highlighted in
red. Several participants that answered the task question correctly
often had many fixations on the buggy lines of code towards the
end of their session. For example, when looking at participants P214
and P217 in Figure 13, P214 spent most of the time looking at the
lines of code with the bug in the second half of the plot, whereas
P217 spent less time looking at the bug.

The Alpscarf plots also show how several participants spend a
disproportionately large amount of time on the ambiguous method
within the WelcomeWorld class called stopped() as shown in Fig-
ure 12, a method similarly named to the Greenfoot method stop(),
despite stopped() being three lines long and not relevant to the bug.
An example of this can be seen with participants P220 and P226
in Figure 13, where two participants spent a noticeable portion of
their time reading the stopped() method and also give an incorrect
answer.

When comparing the different code conditions presented to a
participant, there does not appear to be a clear difference in what
order participants read code, as there are individual differences
within the same condition. One noticeable thing, however, is that
all participants who answered the task question correctly were
reading the buggy lines toward the end of the task. However, out of
the 19 participants that completed Task 7 in Stride, only 4 answered
correctly.

5 DISCUSSION AND IMPLICATIONS
5.1 Eye gaze metrics
The main eye gaze differences found in the Stride treatment were
that the participants’ gaze moved around less, they had shorter
saccade lengths, longer fixation durations, fewer regressions, and

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj Jensen, and Michael Kölling

Figure 12: Snippet of method containing bug and ambiguously named method from Task 7 (WelcomeWorld).

Table 7: Percentages of fixation count and fixation duration
for each key part of Task 7 (WelcomeWorld) code that is used
as an AOI.

Key Part % Number of
Fixations

% Fixation
Duration

field declaration 2.37% 2.67%
field assignment 1.62% 1.58%
if / else 13.41% 10.82%
method comments 7.85% 9.26%
if 8.03% 9.83%
bug lines 5.34% 5.65%
call buggy method 1.44% 1.44%
ambiguous method 2.00% 1.83%

less line coverage compared to the other two treatments. Previ-
ous research, as reviewed by Debue and van de Leemput [15] and
Godwin et al. [17], has suggested that longer fixations and shorter
saccades are both associated with higher cognitive load. Thus our
results might suggest that Stride has a higher cognitive load than
the other interfaces. However, this is unlikely to be due to the scope
highlighting, since Stride differed in both these metrics to the Java
highlighting condition, which has almost identical scope highlight-
ing. The difference is likely based on other features where Stride
differs from Java (as visible in Figure 1), which could be any/all of:

• use of a variable-spaced font,
• less syntax highlighting, or
• reduced structural syntax (no semi-colons or curly brackets).

It is not possible to tell amongst our participants whether this
is because these features inherently increase cognitive load, or
whether it is related to the novelty of these interface features, as
only one participant had seen Stride before. Note again that the
scope highlighting, a novel and intrusive feature, does not seem to

have produced equivalent effects (although it was not novel to all
participants). There is also a perceptual phenomenon where when
something is bound by a border, it can lock people perceptionally
into the box they are in, making it less likely that people will jump
to different areas and stay more constrained to each box, which
could explain the short saccade length.

Alternatively, it is possible that the participants were simply
better able to find the relevant lines of code in Stride and thus
did not need to navigate around the code as much, meaning the
gaze data indicates better focus. However, such a difference did not
translate into any differences in task accuracy or speed, as we will
discuss next.

5.2 Code comprehension performance
We found no difference in code comprehension task performance
between the three different interfaces. Looking only at correct
answers (to avoid issues with a speed-accuracy trade-off), we also
found no difference in speed.

We believe this is a surprising result; the background highlight-
ing that is present in the Java Highlight (JH) and Stride (S) condi-
tions is particularly intrusive compared to the Java No highlight
(JN) condition (see Figure 1). There are also several differences
between JH and S: Stride has no curly brackets, no semi-colons,
uses a different (non-monospace) font and has no syntax coloring.
Furthermore, the eye tracking found many significant differences
in gaze behavior. Yet, the conditions show no significant difference
in performance.

The code in all three interfaces was presented with the same
layout, so we could speculate that it is layout that is crucial, not
the visual styling of color or background. However, Siegmund et al.
[40] found in their study that disrupted layout did not affect com-
prehension performance, and Bauer et al. [5] found that the level
(horizontal amount) of indentation also did not affect performance.

Eye tracking study assessing impact of background styling on novices’ code understanding ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

Figure 13: Alpscarf (not normalized) plot showing scanpath and proportional fixation duration on key parts of Java code with
highlighting (JH) for each participant during Task 7 (WelcomeWorld), where buggy parts of code are shown in red.

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj Jensen, and Michael Kölling

Figure 14: Alpscarf (not normalized) plot showing scanpath and proportional fixation duration on key parts of Java code
without highlighting (JN) for each participant during Task 7 (WelcomeWorld), where buggy parts of code are shown in red.

Eye tracking study assessing impact of background styling on novices’ code understanding ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

Figure 15: Alpscarf (not normalized) plot showing scanpath and proportional fixation duration on key parts of Stride code (S)
for each participant during Task 7 (WelcomeWorld), where buggy parts of code are shown in red.

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj Jensen, and Michael Kölling

Combined with this study, it suggests that program comprehension
is surprisingly invariant to presentation changes.

One potential factor could have been familiarity with the inter-
face, but this made no difference when included in the analysis. It
did not matter whether the participants had used scope highlight-
ing regularly in a course, or saw it for the first time during the
experiment: there was still no difference in performance.

There are two ways to act on such a difference. One is to view
decorations as a purely personal or aesthetic choice: there is no
difference in performance, so use them if you like them, or turn
them off if you do not. Another interpretation is that having such
an option is futile if it offers no benefit. However, it is important
to understand that the decoration has a different purpose in Java
compared to Stride. In Java, it is an optional addition that is drawn
based on the canonical structure provided by the curly brackets
in the text program. In Stride, it reflects the canonical structure of
the program; the frames are the only indication of the program’s
structure. If they were not drawn, the usability of the program may
suffer as the extent of the scopes would become less clear when
editing the program – just as in block-based programming, if you
did not draw outlines for the blocks or color them differently, it
would become much harder to use.

Another important observation is that even though we did not
find any performance-related differences, the eye-tracking linearity
metrics did show some significant differences between the con-
ditions. Put another way, two people might solve the same task
correctly but one of them might find it much harder to do and the
only way to see this is via the eye tracking metrics. This should
also be taken with a grain of salt as we would like to point out that
no one eye metric (such as linearity) should be interpreted by itself,
rather a suite of metrics should be used to cross-check the results.
In our study, these metrics found a consistent difference between
Stride and the Java conditions.

6 CONCLUSIONS AND FUTUREWORK
In this study, novice programmers performed code comprehension
tasks in one of three interfaces (Java with no scope highlighting,
Java with scope highlighting, and Stride – see Figure 1), which
differed in how the code was presented in terms of background
highlighting, font, syntax highlighting and other decorations. We
used eye-tracking hardware to measure participants’ gaze behavior,
and we recorded their spoken answers which were then graded for
correctness and speed. We found several differences in eye behavior
between Stride and the two Java conditions, but few between the
two Java conditions. We found no difference between the interfaces
in terms of answer correctness nor any difference in speed (which
was examined for correct answers only).

Designers of program editors have added many different kinds
of visual decorations to their editors, which are perceived by edu-
cators as efficient assistance for students to learn to program. Most
of these additions have not been tested in research studies, but
previous research has shown no behavioral effect of syntax high-
lighting [8, 19], amount of horizontal indentation [5], or misplaced
indentation [40]. Nevertheless, we expected that being quite an
intrusive change, the scope highlighting (especially combined with
the lack of curly brackets and other changes in Stride) would show

an effect on code reading in controlled conditions. This expectation
was supported by a prior study by Weintrop et al. [48] which found
a difference when presenting questions with or without scope high-
lighting in a paper-based exam. However, we found no effect on
task performance in terms of correctness or speed. This matches
the result of an observational study that looked at Java vs Stride in
a school setting with teenagers and found no difference in perfor-
mance on a series of code writing task across multiple lessons [11],
although a prior study had found some differences in task comple-
tion rate [32]. Overall, it seems that high-level behavioral measures
are often invariant to the way in which the code is presented, pre-
sumably because any high-level effect of presentation differences
is small.

We did find a difference in eye gaze behavior, but primarily be-
tween Stride and the two Java conditions – the two Java conditions
did not differ from each other on most metrics. This is an interest-
ing finding because the scope highlighting background is different
between the two Java conditions yet similar between Java with
highlighting, and Stride. Therefore one possible explanation is that
it is Stride’s other features causing the difference: the changes in
font, background highlighting, line spacing, or syntax highlight-
ing. The pattern of the metric differences could indicate a higher
cognitive load for Stride, but an alternative explanation is that par-
ticipants needed to navigate around the code less in Stride. It cannot
be determined in this study whether these differences are due to
novelty of Stride’s interface, as only one of the participants had
seen Stride before.

As part of our future work, we plan to investigate the eye-
tracking results of Stride further. To rule out the novelty factor,
we would need to conduct a study with participants for whom
Stride was not novel. Alternatively or additionally, we could per-
form experiments with finer-grained variations in the interface,
adjusting the display of Stride or Java without highlighting in order
to determine exactly which aspects of Stride’s interface caused the
difference in eye behavior.

ACKNOWLEDGMENTS
This work is supported in part by the US National Science Founda-
tion under Grant Numbers CNS 18-55753 and CCF 18-55756. We
are very grateful to Joshua Behler for his valuable help in adjusting
iTrace Toolkit to meet the technical specifications incurred by the
iTrace-BlueJ plugin (especially for Stride data). We are grateful to
Andrei Balcau, supported by the King’s College London Undergrad-
uate Research Fellowship scheme, for doing early pilot tests of the
technology. Finally, we are grateful to Jordan Cohen, who gave
permission to use his space game Greenfoot scenario for this study.

REFERENCES
[1] Nahla J Abid, Bonita Sharif, Natalia Dragan, Hend Alrasheed, and Jonathan I

Maletic. 2019. Developer Reading Behavior While Summarizing Java Methods:
Size and Context Matters. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 384–395. https://doi.org/10.1109/ICSE.2019.
00052

[2] Ahmad Zamzuri Mohamad Ali, Rahani Wahid, Khairulanuar Samsudin, and
Muhammad Zaffwan Idris. 2013. Reading on the Computer Screen: Does Font
Type Have Effects on Web Text Readability?. International Education Studies 6, 3
(2013), 26–35.

https://doi.org/10.1109/ICSE.2019.00052
https://doi.org/10.1109/ICSE.2019.00052

Eye tracking study assessing impact of background styling on novices’ code understanding ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA

[3] Salwa Aljehane, Bonita Sharif, and Jonathan Maletic. 2021. Determining Dif-
ferences in Reading Behavior Between Experts and Novices by Investigat-
ing Eye Movement on Source Code Constructs During a Bug Fixing Task. In
ACM Symposium on Eye Tracking Research and Applications (ETRA ’21 Short
Papers). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3448018.3457424

[4] Richard Andersson, Marcus Nyström, and Kenneth Holmqvist. 2010. Sampling
frequency and eye-tracking measures: how speed affects durations, latencies,
and more. Journal of Eye Movement Research 3, 3 SE - Articles (sep 2010). https:
//doi.org/10.16910/jemr.3.3.6

[5] Jennifer Bauer, Janet Siegmund, Norman Peitek, Johannes C. Hofmeister, and
Sven Apel. 2019. Indentation: Simply a Matter of Style or Support for Program
Comprehension?. In 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC). 154–164. https://doi.org/10.1109/ICPC.2019.00033

[6] Roman Bednarik and Markku Tukiainen. 2006. An Eye-Tracking Methodology
for Characterizing Program Comprehension Processes. In Proceedings of the 2006
Symposium on Eye Tracking Research & Applications (ETRA ’06). Association for
Computing Machinery, New York, NY, USA, 125–132. https://doi.org/10.1145/
1117309.1117356

[7] Roman Bednarik and Markku Tukiainen. 2008. Temporal Eye-Tracking Data:
Evolution of Debugging Strategies with Multiple Representations. In Proceed-
ings of the 2008 Symposium on Eye Tracking Research & Applications (ETRA ’08).
Association for Computing Machinery, New York, NY, USA, 99–102. https:
//doi.org/10.1145/1344471.1344497

[8] Tanya Beelders and Jean-Pierre du Plessis. 2016. The Influence of Syntax High-
lighting on Scanning and Reading Behaviour for Source Code. In Proceedings
of the Annual Conference of the South African Institute of Computer Scientists
and Information Technologists (Johannesburg, South Africa) (SAICSIT ’16). As-
sociation for Computing Machinery, New York, NY, USA, Article 5, 10 pages.
https://doi.org/10.1145/2987491.2987536

[9] Joshua Behler, Praxis Weston, Drew Guarnera, Bonita Sharif, and Jonathan
Maletic. 2023. iTrace-Toolkit: A Pipeline for Analyzing Eye-Tracking Data
of Software Engineering Studies. In Proceedings of the 45th IEEE/ACM Inter-
national Conference on Software Engineering ICSE. 4 pages to appear. https:
//doi.org/10.1109/ICSE-Companion58688.2023.00022

[10] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the
Royal Statistical Society. Series B (Methodological) 57, 1 (1995), 289–300. http:
//www.jstor.org/stable/2346101

[11] Neil Brown, Charalampos Kyfonidis, PierreWeill-Tessier, Brett Becker, Joe Dillane,
and Michael Kölling. 2021. A Frame of Mind: Frame-Based vs. Text-Based Editing.
In Proceedings of the 2021 Conference on United Kingdom & Ireland Computing
Education Research (Glasgow, United Kingdom) (UKICER ’21). Association for
Computing Machinery, New York, NY, USA, Article 2, 7 pages. https://doi.org/
10.1145/3481282.3481286

[12] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Pater-
son, Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye Movements in
Code Reading: Relaxing the Linear Order. In 2015 IEEE 23rd International Confer-
ence on Program Comprehension. IEEE, 255–265. https://doi.org/10.1109/ICPC.
2015.36

[13] Teresa Busjahn, Carsten Schulte, Bonita Sharif, Simon, Andrew Begel, Michael
Hansen, Roman Bednarik, Paul Orlov, Petri Ihantola, Galina Shchekotova, and
Maria Antropova. 2014. Eye Tracking in Computing Education. In Proceedings
of the Tenth Annual Conference on International Computing Education Research
(ICER ’14). Association for Computing Machinery, New York, NY, USA, 3–10.
https://doi.org/10.1145/2632320.2632344

[14] Stéphane Conversy. 2014. Unifying Textual and Visual: A Theoretical Account
of the Visual Perception of Programming Languages. In Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software (Portland, Oregon, USA) (Onward! 2014). Association
for Computing Machinery, New York, NY, USA, 201–212. https://doi.org/10.
1145/2661136.2661138

[15] Nicolas Debue and Cécile van de Leemput. 2014. What does germane load mean?
An empirical contribution to the cognitive load theory. Frontiers in Psychology 5
(2014). https://doi.org/10.3389/fpsyg.2014.01099

[16] Rodrigo Duran, Albina Zavgorodniaia, and Juha Sorva. 2022. Cognitive Load
Theory in Computing Education Research: A Review. ACM Trans. Comput. Educ.
22, 4, Article 40 (sep 2022), 27 pages. https://doi.org/10.1145/3483843

[17] Hayward J Godwin, Michael C Hout, Katrín J Alexdóttir, Stephen C Walenchok,
and Anthony S Barnhart. 2021. Avoiding potential pitfalls in visual search and
eye-movement experiments: A tutorial review. Atten. Percept. Psychophys. 83, 7
(Oct. 2021), 2753–2783.

[18] DrewTGuarnera, Corey ABryant, AshwinMishra, Jonathan IMaletic, and Bonita
Sharif. 2018. itrace: Eye tracking infrastructure for development environments. In
Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications.
ACM, 105.

[19] Christoph Hannebauer, Marc Hesenius, and Volker Gruhn. 2018. Does syntax
highlighting help programming novices? Empirical Software Engineering 23, 5,

2795–2828. https://doi.org/10.1007/s10664-017-9579-0
[20] Geoffrey L. Herman, Sofia Meyers, and Sarah-Elizabeth Deshaies. 2021. A Com-

parison of Novice Coders’ Approaches to Reading Code: An Eye-tracking Study.
ASEE Annual Conference and Exposition, Conference Proceedings (26 July 2021).
https://doi.org/10.18260/1-2--36567 2021 ASEE Virtual Annual Conference, ASEE
2021 ; Conference date: 26-07-2021 Through 29-07-2021.

[21] Geoffrey L. Herman, Sofia Meyers, and Sarah-Elizabeth Deshaies. 2021. A Com-
parison of Novice Coders’ Approaches to Reading Code: An Eye-tracking Study.
ASEE Annual Conference and Exposition, Conference Proceedings (26 July 2021).
https://doi.org/10.18260/1-2--36567 2021 ASEE Virtual Annual Conference, ASEE
2021 ; Conference date: 26-07-2021 Through 29-07-2021.

[22] Nina Hollender, Cristian Hofmann, Michael Deneke, and Bernhard Schmitz. 2010.
Integrating cognitive load theory and concepts of human–computer interaction.
Computers in Human Behavior 26, 6 (2010), 1278–1288. https://doi.org/10.1016/j.
chb.2010.05.031 Online Interactivity: Role of Technology in Behavior Change.

[23] Kenneth Holmqvist and Richard Andersson. 2017. Eye-tracking: A comprehensive
guide to methods, paradigms and measures. Oxford University Press.

[24] Sherri L Jackson. 2015. Researchmethods and statistics: A critical thinking approach.
Cengage learning.

[25] Robert J K Jacob. 1991. The Use of Eye Movements in Human-computer Interac-
tion Techniques: What You Look at is What You Get. ACM Trans. Inf. Syst. 9, 2
(apr 1991), 152–169. https://doi.org/10.1145/123078.128728

[26] Philipp Kather, Rodrigo Duran, and Jan Vahrenhold. 2021. Through (Tracking)
Their Eyes: Abstraction and Complexity in Program Comprehension. ACM Trans.
Comput. Educ. 22, 2, Article 17 (nov 2021), 33 pages. https://doi.org/10.1145/
3480171

[27] Katja Kevic, Braden M Walters, Timothy R Shaffer, Bonita Sharif, David C Shep-
herd, and Thomas Fritz. 2015. Tracing Software Developers’ Eyes and Interactions
for Change Tasks. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2015). Association for Computing Machinery,
New York, NY, USA, 202–213. https://doi.org/10.1145/2786805.2786864

[28] Michael Kölling, Neil CC Brown, and Amjad Altadmri. 2017. Frame-based editing.
Journal of Visual Languages and Sentient Systems 3 (2017), 40–67.

[29] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg. 2003. The
BlueJ system and its pedagogy. Computer Science Education 13, 4 (2003), 249–268.

[30] Ian McChesney and Raymond Bond. 2021. Eye Tracking Analysis of Code Layout,
Crowding and Dyslexia - An Open Data Set. In ACM Symposium on Eye Tracking
Research and Applications (ETRA ’21 Short Papers). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3448018.3457420

[31] Manuel Perea. 2013. Why does the APA recommend the use of serif fonts?
Psicothema 25, 1 (2013), 13–17.

[32] Thomas W. Price, Neil C.C. Brown, Dragan Lipovac, Tiffany Barnes, and Michael
Kölling. 2016. Evaluation of a Frame-Based Programming Editor. In Proceedings
of the 2016 ACM Conference on International Computing Education Research (Mel-
bourne, VIC, Australia) (ICER ’16). Association for Computing Machinery, New
York, NY, USA, 33–42. https://doi.org/10.1145/2960310.2960319

[33] K Rayner. 1998. Eye movements in reading and information processing: 20
years of research. Psychological bulletin 124, 3 (nov 1998), 372–422. https:
//doi.org/10.1037/0033-2909.124.3.372

[34] Carsten Schulte. 2008. Block Model: An Educational Model of Program Com-
prehension as a Tool for a Scholarly Approach to Teaching. In Proceedings of
the Fourth International Workshop on Computing Education Research (Sydney,
Australia) (ICER ’08). Association for Computing Machinery, New York, NY, USA,
149–160. https://doi.org/10.1145/1404520.1404535

[35] Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa Busjahn, and James H.
Paterson. 2010. An Introduction to Program Comprehension for Computer
Science Educators. In Proceedings of the 2010 ITiCSE Working Group Reports
(Ankara, Turkey) (ITiCSE-WGR ’10). Association for Computing Machinery, New
York, NY, USA, 65–86. https://doi.org/10.1145/1971681.1971687

[36] Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C. Müller,
Michael Falcone, and Bonita Sharif. 2015. ITrace: Enabling Eye Tracking on
Software Artifacts within the IDE to Support Software Engineering Tasks. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Machinery, New
York, NY, USA, 954–957. https://doi.org/10.1145/2786805.2803188

[37] Zohreh Sharafi, Bonita Sharif, Yann-Gaël Guéhéneuc, Andrew Begel, Roman
Bednarik, and Martha E. Crosby. 2020. A practical guide on conducting eye
tracking studies in software engineering. Empir. Softw. Eng. 25, 5 (2020), 3128–
3174. https://doi.org/10.1007/s10664-020-09829-4

[38] Bonita Sharif, Michael Falcone, and Jonathan I Maletic. 2012. An Eye-Tracking
Study on the Role of Scan Time in Finding Source Code Defects. In Proceedings of
the Symposium on Eye Tracking Research and Applications (ETRA ’12). Association
for Computing Machinery, New York, NY, USA, 381–384. https://doi.org/10.
1145/2168556.2168642

[39] Bonita Sharif and Jonathan I Maletic. 2010. An Eye Tracking Study on camelCase
and under_score Identifier Styles. In 2010 IEEE 18th International Conference on
Program Comprehension. IEEE, 196–205. https://doi.org/10.1109/ICPC.2010.41

https://doi.org/10.1145/3448018.3457424
https://doi.org/10.1145/3448018.3457424
https://doi.org/10.16910/jemr.3.3.6
https://doi.org/10.16910/jemr.3.3.6
https://doi.org/10.1109/ICPC.2019.00033
https://doi.org/10.1145/1117309.1117356
https://doi.org/10.1145/1117309.1117356
https://doi.org/10.1145/1344471.1344497
https://doi.org/10.1145/1344471.1344497
https://doi.org/10.1145/2987491.2987536
https://doi.org/10.1109/ICSE-Companion58688.2023.00022
https://doi.org/10.1109/ICSE-Companion58688.2023.00022
http://www.jstor.org/stable/2346101
http://www.jstor.org/stable/2346101
https://doi.org/10.1145/3481282.3481286
https://doi.org/10.1145/3481282.3481286
https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.1145/2632320.2632344
https://doi.org/10.1145/2661136.2661138
https://doi.org/10.1145/2661136.2661138
https://doi.org/10.3389/fpsyg.2014.01099
https://doi.org/10.1145/3483843
https://doi.org/10.1007/s10664-017-9579-0
https://doi.org/10.18260/1-2--36567
https://doi.org/10.18260/1-2--36567
https://doi.org/10.1016/j.chb.2010.05.031
https://doi.org/10.1016/j.chb.2010.05.031
https://doi.org/10.1145/123078.128728
https://doi.org/10.1145/3480171
https://doi.org/10.1145/3480171
https://doi.org/10.1145/2786805.2786864
https://doi.org/10.1145/3448018.3457420
https://doi.org/10.1145/2960310.2960319
https://doi.org/10.1037/0033-2909.124.3.372
https://doi.org/10.1037/0033-2909.124.3.372
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1145/1971681.1971687
https://doi.org/10.1145/2786805.2803188
https://doi.org/10.1007/s10664-020-09829-4
https://doi.org/10.1145/2168556.2168642
https://doi.org/10.1145/2168556.2168642
https://doi.org/10.1109/ICPC.2010.41

ICER ’23 V1, August 07–11, 2023, Chicago, IL, USA Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj Jensen, and Michael Kölling

[40] Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister,
Christian Kästner, Andrew Begel, Anja Bethmann, and André Brechmann. 2017.
Measuring Neural Efficiency of Program Comprehension. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn, Ger-
many) (ESEC/FSE 2017). Association for Computing Machinery, New York, NY,
USA, 140–150. https://doi.org/10.1145/3106237.3106268

[41] Steven J. Spencer, Christine Logel, and Paul G. Davies. 2016. Stereotype
Threat. Annual Review of Psychology 67, 1 (2016), 415–437. https://doi.org/
10.1146/annurev-psych-073115-103235 arXiv:https://doi.org/10.1146/annurev-
psych-073115-103235 PMID: 26361054.

[42] Margaret-Anne Storey. 2006. Theories, tools and research methods in program
comprehension: past, present and future. Software Quality Journal 14, 3 (01 Sep
2006), 187–208. https://doi.org/10.1007/s11219-006-9216-4

[43] Matúš Sulír, Michaela Bačíková, Sergej Chodarev, and Jaroslav Porubän. 2018.
Visual augmentation of source code editors: A systematic mapping study. Journal
of Visual Languages & Computing 49 (2018), 46–59. https://doi.org/10.1016/j.jvlc.
2018.10.001

[44] Renske Talsma, Erik Barendsen, and Sjaak Smetsers. 2020. Analyzing the influence
of block highlighting on beginning programmers’ reading behavior using eye
tracking. In Proceedings of the 9th Computer Science Education Research Conference.
ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/3442481.3442505

[45] Dmitry A. Tarasov, Alexander P. Sergeev, and Victor V. Filimonov. 2015. Legibility
of Textbooks: A Literature Review. Procedia - Social and Behavioral Sciences 174
(2015), 1300–1308. https://doi.org/10.1016/j.sbspro.2015.01.751 International
Conference on New Horizons in Education, INTE 2014, 25-27 June 2014, Paris,
France.

[46] Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi Matsumoto.
2006. Analyzing Individual Performance of Source Code Review Using Reviewers’

Eye Movement. In Proceedings of the 2006 Symposium on Eye Tracking Research &
Applications (ETRA ’06). Association for Computing Machinery, New York, NY,
USA, 133–140. https://doi.org/10.1145/1117309.1117357

[47] Adrian Voßkühler, Volkhard Nordmeier, Lars Kuchinke, and Arthur M Jacobs.
2008. OGAMA (Open Gaze andMouse Analyzer): Open-source software designed
to analyze eye and mouse movements in slideshow study designs. Behavior
Research Methods 40, 4 (2008), 1150–1162. https://doi.org/10.3758/BRM.40.4.1150

[48] David Weintrop, Heather Killen, Talal Munzar, and Baker Franke. 2019. Block-
Based Comprehension: Exploring and Explaining Student Outcomes from a Read-
Only Block-Based Exam. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association
for Computing Machinery, New York, NY, USA, 1218–1224. https://doi.org/10.
1145/3287324.3287348

[49] Susan Wiedenbeck. 1986. Beacons in Computer Program Comprehension. Int. J.
Man Mach. Stud. 25, 6 (1986), 697–709. https://doi.org/10.1016/S0020-7373(86)
80083-9

[50] Susan Wiedenbeck and Nancy J. Evans. 1986. BEACONS IN PROGRAM COM-
PREHENSION. SIGCHI Bull. 18, 2 (oct 1986), 56–57. https://doi.org/10.1145/
15683.1044090

[51] Chia-Kai Yang and Chat Wacharamanotham. 2018. Alpscarf: Augmenting Scarf
Plots for Exploring Temporal Gaze Patterns. In Extended Abstracts of the 2018
CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada)
(CHI EA ’18). Association for Computing Machinery, New York, NY, USA, 1–6.
https://doi.org/10.1145/3170427.3188490

[52] Alfred L Yarbus. 1967. Eye Movements During Perception of Complex Objects.
Springer US, Boston, MA, 171–211. https://doi.org/10.1007/978-1-4899-5379-7_8

https://doi.org/10.1145/3106237.3106268
https://doi.org/10.1146/annurev-psych-073115-103235
https://doi.org/10.1146/annurev-psych-073115-103235
https://arxiv.org/abs/https://doi.org/10.1146/annurev-psych-073115-103235
https://arxiv.org/abs/https://doi.org/10.1146/annurev-psych-073115-103235
https://doi.org/10.1007/s11219-006-9216-4
https://doi.org/10.1016/j.jvlc.2018.10.001
https://doi.org/10.1016/j.jvlc.2018.10.001
https://doi.org/10.1145/3442481.3442505
https://doi.org/10.1016/j.sbspro.2015.01.751
https://doi.org/10.1145/1117309.1117357
https://doi.org/10.3758/BRM.40.4.1150
https://doi.org/10.1145/3287324.3287348
https://doi.org/10.1145/3287324.3287348
https://doi.org/10.1016/S0020-7373(86)80083-9
https://doi.org/10.1016/S0020-7373(86)80083-9
https://doi.org/10.1145/15683.1044090
https://doi.org/10.1145/15683.1044090
https://doi.org/10.1145/3170427.3188490
https://doi.org/10.1007/978-1-4899-5379-7_8

	Abstract
	1 Introduction
	2 Related work
	2.1 Relation between theory and editor design
	2.2 Role of scope highlighting in code understanding
	2.3 Code reading task choice
	2.4 Eye tracking

	3 Method
	3.1 Pre-registration
	3.2 Conditions and Design
	3.3 Activities
	3.4 Apparatus
	3.5 Study Protocol
	3.6 Data Collection

	4 Results
	4.1 Participation
	4.2 Dataset Errata
	4.3 RQ1 and RQ2 Results: Task Correctness and Duration
	4.4 Participant Perception of Background Differences
	4.5 RQ3 Results: Eye Movement Data

	5 Discussion and Implications
	5.1 Eye gaze metrics
	5.2 Code comprehension performance

	6 Conclusions and Future Work
	Acknowledgments
	References

