
How Consistent Are Humans When Grading Programming
Assignments?

MARCUS MESSER, Informatics, King’s College London, London, United Kingdom of Great
Britain and Northern Ireland
NEIL C. C. BROWN, King’s College London, London, United Kingdom of Great Britain and Northern
Ireland
MICHAEL KÖLLING, Department of Informatics, King’s College London, London,
United Kingdom of Great Britain and Northern Ireland
MIAOJING SHI, College of Electronic and Information Engineering, Tongji University, Shanghai, China

Providing consistent summative assessment to students is important, as the grades they are awarded affect
their progression through university and future career prospects. While small cohorts are typically assessed
by a single assessor, such as the module/class leader, larger cohorts are often assessed by multiple assessors,
typically teaching assistants, which increases the risk of inconsistent grading.

To investigate the consistency of human grading of programming assignments, we asked 28 participants to
each grade 40 CS1 introductory Java assignments, providing grades and feedback for correctness, code elegance,
readability and documentation; the 40 assignments were split into two batches of 20. The 28 participants
were divided into seven groups of four (where each group graded the same 40 assignments) to allow us to
investigate the consistency of a group of assessors. In the second batch of 20, we duplicated one assignment
from the first to analyse the internal consistency of individual assessors.

We measured the inter-rater reliability of the groups using Krippendorff’s U—an U > 0.667 is recommended
to make tentative conclusions based on the rating. Our groups were inconsistent, with an average U = 0.2
when grading correctness and an average U < 0.1 for code elegance, readability and documentation.

To measure the individual consistency of graders, we measured the distance between the grades they
awarded for the duplicated assignment in batch one and batch two. Only one participant of the 22 who
didn’t notice that the assignment was a duplicate was awarded the same grade for correctness, code elegance,
readability and documentation. The average grade difference was 1.79 for correctness and less than 1.6 for
code elegance, readability and documentation.

Our results show that human graders in our study cannot agree on the grade to give a piece of student work
and are often individually inconsistent, suggesting that the idea of a ‘gold standard’ of human grading might
be flawed. This highlights that a shared rubric alone is not enough to ensure consistency, and other aspects
such as assessor training and alternative grading practices should be explored to improve the consistency of
human grading further when grading programming assignments.

Funding support for this article was provided by the King’s College London College Teaching Fund.
Authors’ Contact Information: Marcus Messer (corresponding author), Informatics, King’s College London, London, United
Kingdom of Great Britain and Northern Ireland; e-mail: marcus.messer@kcl.ac.uk; Neil C. C. Brown, King’s College
London, London, United Kingdom of Great Britain and Northern Ireland; e-mail: neil.c.c.brown@kcl.ac.uk; Michael Kölling,
Department of Informatics, King’s College London, London, United Kingdom of Great Britain and Northern Ireland; e-mail:
michael.kolling@kcl.ac.uk; Miaojing Shi, College of Electronic and Information Engineering, Tongji University, Shanghai,
China; e-mail: mshi@tongji.edu.cn.

This work is licensed under Creative Commons Attribution International 4.0.

© 2025 Copyright held by the owner/author(s).
ACM 1946-6226/2025/9-ART49
https://doi.org/10.1145/3759256

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

https://orcid.org/0000-0001-5915-9153
https://orcid.org/0000-0001-6086-2479
https://orcid.org/0000-0003-0544-2003
https://orcid.org/0000-0002-4933-0073
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759256
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3759256&domain=pdf&date_stamp=2025-09-18

49:2 M. Messer et al.

CCS Concepts: • Social and professional topics → Student assessment; • General and reference →
Empirical studies;

Additional Key Words and Phrases: Computer Science Education, Assessment, Programming Assessment,
Consistency

ACM Reference format:
Marcus Messer, Neil C. C. Brown, Michael Kölling, and Miaojing Shi. 2025. How Consistent Are Humans
When Grading Programming Assignments?. ACM Trans. Comput. Educ. 25, 4, Article 49 (September 2025),
37 pages.
https://doi.org/10.1145/3759256

1 Introduction
As many computer science cohorts are becoming larger [10, 37, 40], delivering high-quality grades
and feedback for student assignments within a timeframe that maximises learning is becoming
increasingly difficult [20, 31]. Promptly providing consistently applied assessment criteria is critical
to maintaining student satisfaction [30].

Summative assessment, where the student is evaluated on what they have learnt during the
semester or chapter [24], majorly impacts the students’ outcomes throughout and after their degree
[34]. During their degree, their grades in the previous year’s courses can determine the students’
progression to the next year. Students’ final degree classification or grades are often factors in
their employment prospects outside of education [34, 61]. Having processes to ensure consistent
or fair marking is crucial to maintaining the perceived value of summative grades and students’
perceptions of justice [47].

While small cohorts are often assessed by a single assessor, such as the module/class leader,
larger cohorts require multiple assessors, typically graduate teaching assistants, to provide grades
and meaningful feedback in a short timeframe. These assessors often use a rubric comprising the
evaluation criteria, quality definitions, and a scoring strategy [51] to grade and provide meaningful
feedback on the students’ work. The rubrics can be written at varying granularities, from generic
criteria encompassing the final grades, to individual rubric items allocating individual marks.
However, using multiple assessors can lead to issues with how consistently the rubric is applied
[46], especially for subjective elements of an assignment like code quality. Though rubrics provide
a scoring strategy for teaching assistants, many experience uncertainty when assessing, even those
who are experienced teaching assistants [53].

Instead of using multiple graders to assess large cohorts, many large programming courses often
use automated assessment tools to grade their assignments. While the automated approaches can
provide a consistent grade based on provided criteria, such as unit tests, they often introduce other
issues. For example, using automated assessment tools that implement tests requires a stringent
structure and a well-tested and developed test suite to produce grades accurately [42]. These test
suite approaches often take time to perfect and cannot search for additional marks for students on
the grade boundary or grade those that submit uncompilable code. Nor can they grade issues such
as code structure or readability.

Neither human grading nor automated assessment tools are infallible. As the grades awarded are
of such high importance, many higher education institutions have policies or practices to minimise
the impact of mistakes within the assessment. Examples of these policies or practices in our country
and our institution specifically include:

—Assessment boards and sub-boards often oversee all aspects of assessment, from the design of
the exam or coursework to the marking scheme to the awarded marks.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

https://doi.org/10.1145/3759256

How Consistent Are Humans When Grading Programming Assignments? 49:3

—Second marking is often used to validate a single marker’s work and can be done blind, without
the grades and feedback from the first marker, or they can be provided with the grades and
feedback from the first marker.

—Scaling marks, especially if a new exam or coursework has performed significantly lower
than previous course iterations.

—Stepped marking is where assessors can only select certain marks steps, such as for a first, 72,
75, or 78 can be selected, limiting issues with students getting final marks at the classification
bounds.

—Student appeals are where the students can request a regrade request on coursework if they
disagree with a grade or feedback they have been given.

Our study aims to investigate the consistency of human graders when assessing a CS1 program-
ming assignment, including how consistently the rubric is applied between multiple and individual
graders, by answering the following ResearchQuestions (RQs):

RQ1. How consistently does a group of typical graders apply a grading rubric? Specifically, what
is the inter-rater agreement of multiple assessors grading the same submissions?

RQ2. Are individual graders consistent at applying a grading rubric? Specifically, do they provide
the same marks for the same work when marked a second time?

These questions will have implications for CS1 courses: how consistent is the grading on large
courses with multiple markers; how consistent are single graders (relevant to small courses); and
how consistent is human grading in general, given that many course leaders will contemplate the
use of automated or AI-driven grading?

We pre-registered our study on the Open Science Foundation before conducting the study [3].
Section 2 discusses existing work on consistency of grading practices and grading with groups of
assessors. Section 4 introduces our data collection and analysis methodology. Section 5 presents
the results from our pilot study and our full study, and Section 6 discusses our results and answers
our RQs. We describe threats to validity in Section 7 and conclude our results and discussion in
Section 8. Our contributions in this article include:

—A new ‘Menagerie’ dataset: a publicly available graded dataset of students’ assignments, avail-
able to the research community, and suitable as a data source for further studies concerning
grading accuracy and consistency.

—An in-depth analysis of the consistency of awarded grades when utilising multiple graders.
—A comprehensive investigation into the awarded grades for individual graders when marked
the same assessment a second time.

2 Related Work
2.1 Consistency in Grading
Applying assessment criteria consistently with detailed feedback is a key factor in student satis-
faction [30]. However, evaluating the consistency of grading and feedback is not often researched.
Migut andWiersma [43] presented a poster showing their preliminary study on whether grading an
online exam matches traditional paper grading and found a small but significant difference between
online and paper grading. Borela and Roy [8] also presented a poster showing the outcome of a
workshop to train TAswith a rubric, which showed a reduction in grade variance after theworkshop.

Both Ahoniemi et al. [1] and Auvinen [4] developed rubric-based grading tools to improve
grading consistency when grading large classes. Auvinen’s tool, Rubyric, provides an interface for
instructors to create rubrics and add feedback phrases. They conducted user satisfaction surveys

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:4 M. Messer et al.

and found that the six undergraduate teaching assistants who graded the assignments thought that
Rubyric made them more consistent. Students tended to agree that the feedback was useful and
detailed [4]. Similarly, Ahoniemi et al. developed a tool called ALOHA, which allows instructors
to construct a rubric and add feedback phrases for common mistakes. They conducted both an
instructor survey and a statistical evaluation of the tool. The survey found that the instructors found
the semi-automated feedback phrasing particularly useful. The statistical analysis, which compared
grades when graded with a paper rubric and those graded with the tool, found that those using the
tool had no significant difference between the graders, and when grading without the tool, had a
significant difference between the grades given by the most lenient grader and two stricter graders.

Evaluating the consistency of assessment has been conducted in numerous other disciplines.
Bloxham et al. [7] took a multidisciplinary approach and investigated 24 assessors from various
disciplines: psychology, nursing, chemistry and history. Each assessor was given five assignments
to grade, each on a typical task for their discipline. They used Kelly’s repository grid exercise
[22] to elicit constructs and grades by first comparing combinations of three assignments, stating
which two are the same and how one is different, and applying a score between 1 and 5 for these
constructs. This study aimed to determine the consistency of the individual constructs, and they
found no consistency in the rankings of constructs within any of the subjects.

Withinmedical education, Dunbar [19] evaluated the consistency of nursing assessment.They ran
a study asking seven educators to assess a reenacted physical examination in person and a recording
of the same examination a month later. They found that the grading in person and the recording
had an inter-rater agreement of approximately 84% between the participants, with the inter-rater
measurement calculated by percentage agreement. McManus et al. [41] explored the variance of
examiner leniency and stringency within clinical examination. They used 3 years of exam grades,
approximately 10,000 candidates, each graded by two examiners, and applied the Rasch model, a
latent trait model used to determine the probability of a person succeeding on an item [66]. Their
results suggest that greater examiner stringency was associated with greater examiner experience.

Henderson et al. [26] examined the grading practices of 30 assessors when grading exams.
The participants, who were from multiple institutions, were provided with five answers to an
introductory calculus exam, with two answers being of interest for investigating the conflict
between valuing reasoning and correctness. Overall, the scoring of these two solutions differed
significantly among individual instructors, with 12 instructors awarding higher grades for one
solution than the other, 13 awarding lower grades, and 5 awarding equal grades for both submissions.

Willey and Gardner [64], investigated methods to ensure marking consistency when using
multiple tutors to grade a second-year engineering course in design fundamentals. Each tutor
was asked to grade their session tutorial of 32 students, and to achieve a consistent standard of
marking between different tutors, they used double-blind marking and remarking. As part of the
grading process, the tutors were arranged into small groups to discuss and regrade the assignments
collaboratively. The course coordinator also provided two benchmark assignments from previous
years that the tutors subsequently graded using specified criteria, effectively reducing the variability
in grading between different tutors. While the study found only small variations between markings
from different tutors, students still complained of a perceived lack of consistency, specifically being
exacerbated by inconsistencies in how different tutors delivered feedback.

Hicks and Diefes-Dux [27] examined the consistency of teaching assistants when grading a
first-year engineering course’s engineering MATLAB assignments. The course was split into 15
sections, with five undergraduate and one graduate teaching assistant, where the undergraduate
teaching assistants graded the homework assignments while supervised by the graduate teaching
assistant. The undergraduate teaching assistants were asked to grade against a rubric, with most
criteria having four achievement levels: no evidence, under-achieved, partially achieved and fully

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:5

achieved. As a baseline grade, the course leader graded 172 submissions. The authors utilised
percentage agreement, Cohen’s kappa and Krippendorff’s alpha to measure the consensus and
consistency between the course leader and the undergraduate teaching assistants. They found that
the course leaders and undergraduate teaching assistants had an agreement of 49.4% and that all
metrics indicated that the undergraduate teaching assistants were applying the same interpretations
of the rubrics that the course leaders intended.

Passonneau et al. [49] as part of their investigation into whether analytic grading rubrics, which
have more specifics than the rubrics provided to the students to define expectations, produce reliable
assessments, they analyse the inter-rater reliability of four undergraduate teaching assistants when
grading physics lab reports. They found that grades administered by the teaching assistants did not
correlate to post hoc assessments from trained raters, identified missed learning opportunities for
students and that instructors were misled about student progress.

While investigating the consistency of the grading process is conducted within other domains,
from the best of our knowledge, this research is rarely conducted within computer science education.
Multiple and individual graders consistently applying a grading rubric is critical in providing a fair
and meaningful assessment of students’ work. In turn, it improves a student’s learning and overall
satisfaction with the course.

2.2 Rubric Design
Rubrics are often used to make assessment expectations transparent [11], and they describe desirable
qualities and common pitfalls in student work against a gradation of quality [2]. A rubric has three
essential features: the evaluation criteria, the definitions of quality and a scoring strategy [51].

A review by Reddy and Andrade [51] discussed rubric use in higher education. They present
20 articles on rubrics and include topics on student and instructor perceptions, use and academic
performance, and rubrics’ validity and reliability. They found that instructors can have contrasting
perceptions of using rubrics, with some believing that rubrics provide an objective basis for
evaluation, while others resist integrating rubrics into their assessment.The review also investigated
how a well-designed scoring rubric should alleviate inconsistencies in the grading process, both
when rubrics are used by a single grader or a group of grader. A well-designed rubric should
minimise errors due to grader training, grader feedback, and clarity in the criteria description. They
further discuss how there is ample evidence of disagreement between assessors when using rubrics
and stress the importance of grader training.

Jönsson and Svingby [29] reviewed the reliability, validity and educational consequences of
using rubrics in assessment. They analysed 75 studies and found that rubrics can improve the
reliability of assessment if they are analytic, topic-specific, and complemented with exemplars
or rater training, especially with open-ended assessment, as it is not always possible to limit the
format of the assessment to achieve high levels of reliability without sacrificing the validity.

Rinne [56]’s recent study aimed to identify sources of inconsistency in assessing undergraduate
dissertations from a primary school teacher education programme. They identify that rubrics are
often short and open to interpretation, resulting in inconsistent assessment, and discuss sources
of inconsistency when grading, which include examiners’ interpretations of quality, and found that
the same grade could be awarded for different reasons, and the same judgement could result in
different grades.

To increase the agreement in teachers’ grading, Jönsson et al. [28] conducted a study into whether
analytic or holistic rubrics enabled consistent assessment. Analytic assessment involves assessing
different aspects of student performance, such as mechanics, grammar, style and organisation. On
the other hand, holistic assessment means making an overall assessment that considers all criteria
simultaneously [28]. Jönsson et al.’s study investigated analytic and holistic grading in both an

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:6 M. Messer et al.

English as a Foreign Language (EFL) and a mathematics high-school course. They found that
analytic grading is slightly preferable to holistic assessment regarding teacher agreement for both
EFL and mathematics. They further conclude that the results support the argument that teachers’
grading is ‘complex, intuitive and tacit’ [7] and that any attempts to achieve grading consistency
are likely futile. However, their results also indicate a small step towards increasing agreement.

In addition to the active area of research investigating how to design rubrics to maximise
consistency while maintaining validity, within computer science, defining rubrics for aspects of
programming, especially code quality, is still a developing field. Stegeman et al. [60] defined a
code quality rubric for introductory programming, including names, comments, formatting and
expressions. They tested this rubric against several programming assignments and found that no
substantial parts of code quality appeared to be missing. Recently, Kirk et al. [33], motivated by
the difficulty for programming educators to find appropriate guidance on teaching style concepts,
have defined a literature-informed model for code style, which includes many of the same topics
introduced by Stegeman et al. but provides further depth and rationale behind the elements.
The model provides an abstract level of the main style aspects that map to understanding and
changing code and include principles that relate to language, layout, constructs, design, redundancy,
implementation, repetition and structure.

2.3 Teaching Assistants and Assessment
Teaching assistants are often crucial in supporting students’ learning; they typically consist of
undergraduate, master’s and PhD students [54, 55, 63].

The three most common duties for teaching assistants include assisting in programming labs,
leading sections to reinforce concepts, and grading; many institutions utilise undergraduate and
graduate teaching assistants [44, 63, 64].

Mirza et al. [44] conducted a systematic literature review into how undergraduate teaching
assistants are used within computer science courses and found that UTAs often grade assignments,
whether they provide the final grades for the assignment, assign coarse primary grades or are one
of the multiple undergraduate teaching assistants to grade each student assignment.

Riese et al. [55] explored the challenges faced by teaching assistants in computer science education
across Europe. At all the institutions involved in their analysis, teaching assistants were involved
in assessment in some form, whether that be assigning points or pass/fail grades. They found that
teaching assistants often faced challenges when assessing student work, including understanding
the assessment criteria, providing meaningful feedback and failing students.

Wald and Harland [63] discuss the trade-offs of employing student teaching assistants in their
position paper, including how they can reduce teaching loads for academics and provide graduate
students with teaching experience and financial support. However, teaching experience can differ
between teaching assistants, especially undergraduate teaching assistants, who typically have
limited academic and pedagogical knowledge, which are both essential for student learning. They
suggest limiting the role of graduate and late-stage undergraduate teaching assistants as graders,
tutors, and demonstrators, as they have yet to find any sound pedagogical arguments supporting
undergraduate teaching assistants as graders. Instead, they suggest that they facilitate discussion
and review course material.

Kristiansen et al. [36] also highlight the importance of properly trained teaching assistants
in their study comparing manual and automated feedback. They found in a controlled study of
undergraduate students in a programming assignment that there was a need for both automated
and manual feedback, providing superior results in task effectiveness and student preferences than
just automated or manual assessment.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:7

Riese and Bälter [54] conducted a qualitative analysis into how course coordinators use as-
sessment throughout their course and what they expect from TAs. They found that the seven
experienced course coordinators in CS1 courses typically use TAs to provide continuous assess-
ments for large cohorts. They discuss how some TAs set the bar too high while others set it too
low, which can lead to inconsistency and that some TAs can view their students as friends, leading
to ethical dilemmas. Similarly, to Kristiansen et al., Riese and Bälter suggest that not all tasks
are suitable for TAs and that assessing students’ competency and knowledge can be difficult for
experienced teachers.

2.4 Educational Datasets
For our study, we required a dataset of student submissions for the grader participants to grade.
While several datasets of students’ programming assignments exist, many are not publicly accessible
[42], consist of small-scale programs [5, 16] or do not capture contextual details [12].

Some project-scale datasets exist, such as the Scratch website scenarios1 or the Blackbox dataset
[12] that are public or available on request. However, they have the disadvantage that the context of
the users is unknown (theymay be students at any stage of education or not even students at all), and
the aim of their project is unknown, preventing judgment against any criteria for progress or success.

In smaller-scale datasets, including FalconCode [16], Hour of Code2, Dublin City University’s
Programming Submission Dataset [5], and online judge tools, such as HackerRank3, the task is
known. However, all of these datasets are closed-ended and focus on small-scale tasks, including
highly structured template code, specific names of classes and functions defined in the requirements,
or simple one-function tasks, such as FizzBuzz or the Rainfall Problem [59]. Therefore, we would
not be able to evaluate the graders consistently when evaluating aspects of code quality, as many
of the students’ decisions regarding code design are already made for them, and many of these
datasets use documentation to explain the task.

To the best of our knowledge, no large project-scale publicly available datasets exist. Therefore,
we developed our dataset, Menagerie. It consists of real CS1 Java programming submissions for a
simulation-based assignment and the associated grades and feedback that arose during this study;
more details can be found in Section 3.1.

3 Research Context
3.1 The Menagerie Dataset
As discussed in Section 2, most publicly available programming datasets do not contain detailed
grading or feedback data. If they contain grades, they are often limited to whether the program
passes or fails a set of automated tests, as most automated assessment tools utilise unit testing
to assess the submissions [42]. As such, we developed our own publicly available programming
dataset containing human graders’ assessments.

We introduce the Menagerie dataset, which comprises 667 real student submissions for King’s
College London’s second semester CS1 Introduction to Programming Java course and is available
publicly, see Section 9.The same assignment was given to students between 2017 and 2021 inclusive,
with minor changes each year.The changes each year included updating the assignment instructions
to clarify points of misunderstanding from the previous years’ assignments, with the tasks and the
provided template code remaining the same year on year.

1Scratch Scenarios: https://scratch.mit.edu/ideas.
2Hour Of Code: https://code.org/research.
3HackerRank: https://www.hackerrank.com/.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

https://scratch.mit.edu/ideas.
https://code.org/research.
https://www.hackerrank.com/.

49:8 M. Messer et al.

Fig. 1. The UML diagram of the provided template code.

The dataset consists of the following:

—The assignment requirements and grading rubric.
—The project’s starter code.
—The students’ Java files.
—Grades and associated feedback for 272 submissions (produced by the current study).

The dataset does not include the students’ original awarded grades, as we did not receive ethical
approval to release them publicly. However, as part of the current study, we asked seven groups of
four to grade and give feedback on 40 submissions per group. We produced grades and feedback
for 272 submissions; seven assignments were duplicated to evaluate grader self-consistency. Details
about the grades and feedback can be found in Section 3.2.

We have received ethical approval from our institution4 to conduct this study and publicly release
the summary of the grader demographics and the individual grades and feedback from each grader.

3.1.1 Assignment Outline. The assignment was a small-group, open-ended paired programming
assignment to utilise object-oriented programming concepts to develop a predator/prey simulator
with groups of two or three. The students were asked to conduct pair programming with explicit
instructions on how to pair program. One student was the ‘driver’, who wrote the code, and the
other was the ‘navigator’, who reviewed the code as it was written, and they were instructed to
switch roles throughout the assignment. The students were provided with a template project based
on the ‘foxes-and-rabbit’ project from the sixth edition of Barnes and Kölling [6]’s book on ‘Objects
First with Java’. The template includes a graphical user interface, a Field class, which contains a two-
dimensional array for the simulation environment, and two animals, a Fox and a Rabbit; Figure 1
shows the class diagram of the template code. Students were asked to extend the template code
with the following base tasks:

—The simulation should have at least five species, with at least two being predators and at least
two not being predators.

4Ethics review reference: LRS/DP-22/23-35578.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:9

—At least two predators should compete for the same food source.
—Some or all species should distinguish between male and female animals and only propagate
when male and female species are in a neighbouring cell of the two-dimensional array.

—The simulation should keep track of the time of the day, and some species should exhibit
different behaviours at some time of the day.

After completing the base tasks, the students were asked to implement one or more challenge
tasks. The students could choose to invent their own tasks or to use one or more of the following
suggestions:

—Simulate the lifecycle of plants, including growth and being a food source for at least one
animal.

—Simulate changing weather states and how they affect other simulation aspects.
—Simulate disease within the species, including the spread of the disease.

During the assignment, students could choose which species they implemented, how those
interacted with other species, and how their implementation completed the provided tasks. These
opportunities to decide what they implemented allowed students to apply their creativity, choose
how they designed their code, implement object-oriented principles, and name classes and functions.
The ability of the students to design their solution to a problem and the open-ended nature of
the assignment allows instructors to assess a wider variety of skills than they typically could in
a close-ended small-scale assignment like the Rainfall problem [21, 59]. In this assignment, the
students were assessed on the correctness of the implementation, how elegantly they implemented
the solution, the overall readability of the source code, and how well they documented their code.
A detailed example submission and the details on the data processing pipeline for cleaning the
dataset can be found in Appendix A.

3.1.2 Dataset Limitations. The students were asked to submit a report discussing their imple-
mentation as part of the assignments. However, we have excluded these from the dataset, and they
were not used to grade the assignments, as they cannot be suitably anonymised for public release.
While we automated the de-duplication of the group submissions and removed further duplicate
submissions during the anonymisation, there is a remote chance that some repeated assignments
within the dataset could still exist.

While the students were given instructions on how to pair program, the assessment did not
capture if and how the students conducted pair programming. Anecdotally, some groups started
pair programming, especially in the associated lab sessions. However, as the submission deadline
approached, groups tended to separate the work, with both students writing code in parallel.

As these are historical assignments that we received post hoc permission to release, the students’
demographics were not captured. However, all students were in their first year at King’s College
London and were a mixture of domestic and international students.

3.2 Assessment
The participants graded the submissions from the Menagerie dataset, as discussed in Section 3.1,
and used the rubric from the course as guidelines on how to assign grades, discussed in Section
3.3 and provided in Appendix B. The grades and feedback were captured using Gradescope [58], a
commercial grading platform designed for STEM assignments, including programming assessments,
and allows for rubrics to be uploaded and for graders to provide line-level or overall feedback. While
we captured the feedback, which is available in the dataset, this study focuses on the grades provided.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:10 M. Messer et al.

3.3 Rubric
The rubric we provided participants can be found in Appendix B. This is the original rubric from
the assignment from which the submissions were captured. The participants were asked to supply
letter grades between A and F, with ‘+’ and ‘-’ grades for all letters; for exceptional submissions,
participants could award A++. The rubric in Appendix B includes number bounds for each letter;
this is due to Gradescope only supporting numerical grades. Within Gradescope, we supplied
options that corresponded to the letter grades, with ‘+’ and ‘-’. The numbers were not used for this
study, and participants were instructed to select letter grades in Gradescope.

Participants were asked to grade the following programming skills:

—Correctness. Assess if a student has comprehended and completed the assignments in a way
that complies with the assignment requirements [23].

—Code Elegance. Investigate the overall code design. Have the students use Java design principles
correctly, including inheritance and polymorphism, methods to reduce duplicated code, and
their overall approach to implementing the required features [9, 33].

—Readability. Evaluate whether a student’s submission is easy to understand. This can include
code style, whether formatting, indentation and naming conventions [9, 33].

—Documentation. Assess if and how well students have documented their code, including inline
comments and the natural language code summary (docstring) [9, 33, 50].

While code elegance, readability, and documentation are all aspects of code quality, we asked
participants to provide grades for each aspect, allowing for richer data capture of different aspects of
code quality. Similar aspects have been utilised in multiple different studies [42, 48]. Typically, these
three aspects of code quality and correctness would be aggregated into a single final grade; we chose
not to aggregate the grades, as different assignments will provide different weightings on these
aspects. Thus, we analyse the consistency of grading code elegance, readability, documentation,
and correctness, individually. We leave the methods of combining the grades for educators, but it
does not affect this investigation into the consistency of grading the constituent components.

This rubric consists of the three essential features of a rubric, as discussed in Section 2.2, including
the evaluation criteria, the definitions of quality, and a scoring strategy. While some improvements
could be made to the clarity of the definitions of quality and the scoring strategy, the rubric we
provided our participants was the original rubric from the course, which provided the following:

—A typical representation of a rubric, which has seen many years of use at King’s College
London.

—The same rubric that historical students provided alongside the assignment requirements
guided the design and development of their submissions.

4 Methodology
4.1 Group Consistency (RQ1)
To explore the consistency between graders, each assignment was graded four times, each time
by a different grader. Figure 2 shows an example of what the data includes after the grading is
complete. Grading each assignment multiple times by different graders allowed us to investigate
how consistently a group of graders apply the grading rubric to individual assignments.

To investigate how consistently a group of graders apply a grading rubric, we used Krippendorff’s
U (implemented using the Fast Krippendorff library [13]) to assess the reliability of agreement
between the graders on the awarded grades. Krippendorff’s U is a percent chance-based reliability
coefficient, similar to Cohen’s ^ and Fleiss’ ^. It evaluates the deviation from perfect reliability

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:11

Fig. 2. The data includes an assignment description, a marking rubric, a set of student submissions attempting
the assignment, plus a set of grades and feedback from multiple human markers (A–D here, although more
markers are involved) for each student submission.

by the proportion of observed to expected disagreement and allows any number of raters and
categories while allowing for missing data [35]. It also has several weightings that can be applied
to different types of data, including ordinal, which is data that is both categorical and has an order,
such as letter grades.

As many percent chance agreement-based coefficients, including Krippendorff’s U and Fleiss’
^, underestimate the agreement when one of the labels is dominant [18, 25, 65], we also compute
Gwet’s ��2, which is a weighted variant to Gwet’s ��1, which was designed to be robust in the
high prevalence of a single class [25]. Gwet’s ��2 is more robust in instances of high prevalence,
as it removes from consideration all agreements that occurred by chance [25].

As we planned, each assignment was graded by four of the graders rather than all graders,
making Krippendorff’s U and Gwet’s ��2 the ideal measures. Using Krippendorff’s U and Gwet’s
��2 varies from our pre-registration, as our original choice of metric (Fliess’ ^) required a complete
set of grades and did not consider the ordinal nature of grading, so we realised that this was not
the best choice.

4.2 Individual Consistency (RQ2)
To aid in the research into self-consistency and the study pacing, we supplied the graders with
batches of submissions, allowing us to repeat a few chosen submissions for the graders to regrade,
resulting in some submissions being graded eight times. We chose to repeat assignments represen-
tative of the dataset, specifically assignments of the median size, a common theme, and submissions
that fall near the mean of the grades awarded within the previous batch. The original assignment
for Menagerie was a pair-programming assignment, which was de-duplicated; however, duplicates
could still exist and we told our graders this as a cover story for why they might see multiple
similar assignments. The possibility of duplicates, specifically choosing assignments and the time
between batches, helped mitigate the likelihood of the graders noticing that they were grading the
same assignment (which might have led to the graders going back to the first grading attempt and
copying and pasting their grades instead of grading it fresh a second time).

To evaluate the consistency of individual participants, we calculate the distance between the
grade awarded in the first and second batches for each participant and for each skill. We could
not use typical inter-rater analysis to evaluate self-consistency, as the two grades are too few for
inter-rater reliability metrics, including Krippendorff’s U , Gwet’s ��2 and Fliess’ ^. We chose to
limit the number of repeated assignments to ensure that the participants were unaware that they
were grading a duplicate and to maximise the number of annotations for the dataset.

To provide further information on the participants’ experience grading these assignments, we
conducted a semi-structured interview. These interviews were conducted in English by one of the

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:12 M. Messer et al.

members of the research team and lasted approximately 30 minutes; Microsoft Teams was used to
provide automatic transcription. During the interview, the participants were asked the following
questions:

(1) Can you tell me about your experience grading these assignments?
(2) Can you tell me about your grading process?
(3) How well do you think the rubric aided you when grading the assignment?
(4) Did you review your grades to validate your consistency?
(5) How do you think the environment you were in while grading affected your grading?
(6) How do you think the mood you were in while grading affected your grading?
(7) How do you think the time of day you graded per session affected your grading?
(8) Were there any specific submissions that stuck in your mind?
(9) Did you notice any duplicates or near-duplicates in the data?

(10) Do you have any further comments on your experience?

Unfortunately, many participants did not provide detailed answers for most of the questions
asked, even when prompted for more information. This is likely due to the interviewer’s lack of
experience conducting semi-structured interviews. As such, we have decided not to provide an
in-depth analysis of the semi-structured interviews and only use the answers from questions four
and nine in our results. These questions were coded as ‘yes’ or ‘no’ by one member of the research
team and used to provide further context to our analysis of participant’s individual consistency.

4.3 Pilot Study
To validate our data collection process, we conducted a pilot study with two assessors: one who was
a final-year computer science PhD student with numerous years of grading this specific assignment
and a first-year computer science PhD student with 1 year of grading experience and had previously
completed this assignment as an undergraduate. They were provided the pre-study survey, asked
to grade 2 batches of 20 assignments each, and given 2 weeks to complete each batch, with a
2-week break. After grading, both participants were asked to attend the post-study semi-structured
interview, which we expanded for the pilot study to ask for any improvements that could be made
for the full study.

The participants completed the grading within the supplied time frame and found Gradescope
helpful when grading. However, they both struggled to remember to complete the grading diary
and requested more information about the assignment to be supplied.

For the full study, we provided detailed instructions on using Gradescope, a brief overview of
what the students had learned before submitting the assignment, the coursework specification,
rubric, and template code. We added a link to this information and the diary to each submission in
Gradescope, so that participants were automatically reminded at the end of grading each submission.

4.4 Participant Selection
We conducted a pre-study survey to identify suitable grader participants and collect demographic
data. Our criteria for our participants follow the typical demographics of teaching assistants
performing grading in many institutions [44, 55] and are as follows:

—Students at our institutions in their third year of undergraduate, a master’s student or a PhD
student.

—They identify as proficient in Java programming and have at least 3 years of programming
experience.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:13

All selected participants were remunerated £280 GBP ($340 USD) for participating; this rate was
concurrent with our institution’s hourly rate for teaching assistants. We decided it was important
that our participants receive pay similar to what they would receive when grading for a live
assignment to ensure they take the study seriously and complete all their grading.

4.5 Position Statement
The researchers in this study are three academic staff members and a graduate student at a large
UK university. The dataset is captured from one of the academic staff’s courses, CS1 Java courses
that ran between 2017 and 2021 inclusive, with permission from the college’s ethics committee
(LRS/DP-22/23-34272), the students’ permission was not required for this data, and all data was
validated by research assistants to ensure the data was anonymised, as prescribed by the college’s
data handling policy. The participants who took part in the study are current students at our
institution but are not current students of any members of the research team. The consistency
study was further approved by our college’s ethics committee to use the existing dataset and to
provide remuneration to our participants (LRS/DP-22/23-35578).

5 Results
5.1 Participant Demographics
Through our pre-study survey, we selected 28 participants who matched our criteria to complete
the study. Twenty-five of our participants had over 5 years of programming experience, with three
having between 3 and 5 years, and all identified as proficient in Java. Seven participants were PhD
students, 13 were Masters students, and 8 were third-year undergraduate students. Two participants
graded for between 2 and 3 years, one participant graded between 1 and 2 years, six participants
graded for less than 1 year, and 21 participants had not been assessed before. These are a relatively
typical profile of those recruited to act as graders at our institution, and as described in Section 2.3,
typical of graders at many other institutions as well.

Most of our participants identified as male, with three identifying as female, which follows a
similar distribution of students enrolled in the computer science courses at our institution.

Figure 3 shows the degree level composition for each group of four. Nearly every group contained
one or more PhD students, over half the groups contained two or more master’s students, and most
groups had one or two third-year students.

5.2 Grade Overview
Figure 4 shows the grade distribution for each skill. Most assignments achieved high grades, with
approximately 10% achieving below a B-. Those graded F for correctness include assignments
that failed to compile. Some participants failed to select a grade for certain skills within certain
submissions; these have been omitted from our results. While there is not a lot of variance in the
data, anecdotally this is a similar distribution of grades that we saw while conducting the original
summative grading.

5.3 Grading Consistency of Multiple Graders (RQ1)
5.3.1 Inter-Rater Metrics. Each batch of 20 assignments was graded by a group of four graders.

We discuss our inter-rater reliability results, using Krippendorff’s Alpha (U) for each group of four
graders and each skill, the spread of the awarded grades, and the reliability of individual grades.

We opted to use the ordinal metric within Krippendorff’s U , as letter grades are inherently ordinal;
they are categorical and have an order. The ordinal metric applies weights to the U calculation by
utilising the ordinal difference between ranks [35].

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:14 M. Messer et al.

Fig. 3. The degree level composition for each group of participants.

Fig. 4. The count of awarded grades.

When using Krippendorff’s alpha, if the raters completely agree, U = 1; if there is no agreement,
then U ≤ 0. Krippendorff also suggests that U > 0.800 is acceptable and 0.800 > U ≥ 0.667 are only
for drawing tentative conclusions [35].

Due to an accidental duplicate when setting up the second batch, participants 21–24 graded
assignment 105 twice, these grades have been omitted from our results.

Figure 5 shows the U for each of the seven groups and each skill. These results show that in our
study, consistency was low, but were slightly more likely to agree on the grades for correctness and
code elegance but did not agree on the grades for readability or documentation, with the average U
being 0.220, 0.099, 0.046, and 0.055, respectively.

Figure 6 shows the results of Gwet’s ��2. Following the same bounds defined by Krippendorff,
no groups achieve acceptable agreement (��2 > 0.800) for any of the skills evaluated. However,

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:15

Fig. 5. This heatmap shows the consistency, mea-
sured by Krippendorff’s Alpha (U) with the ordinal
metric, for each group of participants and each
skill. Grades Awarded (A++, A+, A, A-, B+, B, B-,
C+, C, C-, D+, D, D-, F, Not Graded).

Fig. 6. This heatmap shows Gwet’s ��2 with the
ordinal metric applied for each group of partici-
pants and each skill.

some groups show partial agreement with ��2 ≥ 0.667 for specific skills, though on average, no
skill had an ��2 ≥ 0.667, with the average ��2 for correctness being 0.629, for code elegance being
0.592, for readability being 0.638 and for documentation being 0.596.

Out of the four skills that the participants graded, correctness was most likely to be graded more
consistently, with five of the seven groups achieving a higher U than the other four skills, with
groups 5–8 and 25–28 achieving the second most consistently graded skill for their respective
groups. In comparison, all participant groups were similarly inconsistent when grading code
elegance, readability and documentation, all skills achieving an average U < 0.1.

5.3.2 Grading Experience. Our participants had varying grading experience levels, which could
have affected the consistency of their grading. Figure 7 shows the distribution of Krippendorff’s U
for each of the four skills. Independent of the years of experience, no groups achieved an agreement
close to the threshold for partial agreement. Our results for 1–2 years and 2–3 years of experience
show varying levels of agreement, as the sample size of participants who had more than 1 year of
grading experience was small, which is typical at many institutions where undergraduate, master’s
and PhD students all assess student work [44], as many students typically graduate after 1 or 2 years
of working as teaching assistants. Those with 1 year of experience in grading show no significant
improvement in inter-rate agreement compared to those with no grading experience.

Group 17–20, which had the highest average U = 0.257 consisted of three master’s students and
one third-year student. Another group with a similar composition was group 1–4, consisting of
three master’s students and one PhD student; however, they had an average U = 0.123, the fourth
lowest average U .

Group 25–28, which had the highest proportion of PhD students, at two, with one master’s
and one third-year, had the second highest average U = 0.192. Those that primarily consisted of
third-year students, at two, with one master’s and one third year, performed the worst in terms of

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:16 M. Messer et al.

Fig. 7. This figure shows the distribution of Krippendorff’s U for the participant’s grading experience and all
four skills. The box plots’ box shows the inter-quartile range, while the whiskers extend to points within 1.5
of the inter-quartile range. The thresholds for good and partial agreement are the thresholds provided by
Krippendorff [35]. The bar plot shows the proportion of participants with varying levels of grading experience.

inter-rater reliability, with Group 13–16 having an average U = −0.032 and Group 5–8 having an
average U = −0.0598. In most cases, being of a higher degree level when grading CS1 introductory
programming does not increase the consistency when using multiple graders.

5.3.3 Grade Range. To further explore the inter-rater reliability, we evaluated the spread of
grades awarded by each group. Figure 8 shows the minimum, maximum, and mean correctness
grades for group 17–20, which was the most consistent when grading correctness, with an U = 0.45,
and for group 5–8, which was the least consistent when grading correctness, with an U = −0.069.
Appendix C shows the distribution of grades for all groups and all grades.

For our most consistent group (group 17–20), only assignments awarded an F (assignments 80
and 98)—since they either did not compile or did not include any student code—were assessed
with complete agreement. The original authors of assignment 80 submitted the template code they
provided, and assignment 98 did not compile or, if the assessors fixed the compilation error, had an
unhandled NumberFormatException, causing the simulator not to execute.

To further investigate the reliability when awarding each grade, we stipulate that assignments
grade ranges less than or equal to two (e.g., A to B+ is two grades away, and A to A- is one grade
away) have good reliability; those with a range of three (e.g., A+ to B+) have mediocre reliability,
and those with a range greater than three (e.g., A- to C+) have poor reliability; where the grade
range is the maximum awarded grade minus the minimum awarded grade for each assignment.

Figure 9 shows the proportion of the reliability for each grade and skill and shows that our
participants were more reliable at awarding F and D- grades across all four skills than any other,

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:17

Fig. 8. These figures are for the highest and lowest U and show the minimum, maximum and mean correctness
grade awarded by the participants for each assignment. Plots for all groups and all grades can be found in
Appendix C.

Fig. 9. This figure shows the proportion of how reliable each grade is for each skill across the grading scale.
Reliability is defined by the grade range for each assignment, with ‘Good’ as a grade range ≤ 2, ‘Mediocre’
= 3, and ‘Poor’ ≥ 3.

with the middle grades (C- to B+) being the most unreliably graded across all four skills. The higher
grades (A- to A++) were reliable or partiality reliable in less than 20% of assignments graded across
all four skills.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:18 M. Messer et al.

5.3.4 An In-Depth Analysis of the Grades Awarded by Group 17–20. Several assignments were
awarded grades that were one grade bound away, with assignments 568, 211, 659, and 255 all being
awarded an A++ or an A+ and assignment 616 being awarded a D- or an F. With these assignments
being at the tails of the potential grades, it can be difficult to differentiate between the two furthest
bounds, especially with the subjectiveness of open-ended assignments. For assignment 616, three
of the four assessors graded the assignment an F for correctness, as the submission only contained
the base code. However, participant 18 opted to assign the grade D- and gave the feedback, ‘The
submission does not cover any of the requirements in the coursework’. We do not know why
Participant 18 opted to grade assignment 616 with a D- and assignment 80, another assignment that
did not meet the coursework requirements, with an F. However, this does highlight the potential
issues with the internal consistency of human graders, whichwe discuss inmore detail in Section 6.2.

Assignment 526 was the most inconsistently graded within the group 17–20, with grades rang-
ing from A+ to F, with two awarding the assignment F for failing to compile, one awarded the
assignment an A, and the other awarding the assignment an A+. As part of the anonymisation
process, some base classes were copied into the submission. This was brought to our attention early
within batch one; all participants were instructed to delete the problem classes and regrade any
assignments that could not be compiled. However, some may not have completed this step.

The second most inconsistently graded assignment was 103, with the four participants awarding
a D, a C-, a B+ and an A+. Participants 19 and 20, who awarded the assignment a D and a C-,
respectively, highlighted that the assignment spawned three windows, with one having no visible
functionality, but completed all the base tasks and some of the challenge tasks. Participants 17
and 18, who awarded the assignment a B+ and an A+, respectively, chose to focus on completing
the challenge tasks and decided not to penalise the submission for spawning three windows as
heavily. Participant 17 stated in their feedback, ‘Whilst the base tasks were correctly implemented,
the challenge tasks were incorrectly configured…’. This is an excellent example of the hawk and
dove effect, where some examiners are more stringent and require higher performance, the hawks,
than others, the doves [41]. In this case, participants 19 and 20 are the hawks and require the
program to have minimal errors, while participants 17 and 18 are the doves, and chose to focus on
the highlights of what the student has submitted and provide a more lenient grade by overlooking
the bugs within the application.

While correctness is mostly objective, code elegance, readability, and documentation are inher-
ently subjective. Even if aspects of these are defined in the course, such as the specific code style or
code design practice that the students must use, the examiners have their personal preferences on
what makes code readable, well-designed or well-documented. In this assignment, students were
asked to use the code style demonstrated in Barnes and Kölling [6] ‘Objects First with Java’ and to
use object-oriented programming, including inheritance and polymorphism, which they covered in
class in the few weeks before the coursework was set.

Out of our seven groups, group 17–20 had the highest U while grading code elegance with an
U = 0.3, less than the tentative acceptable value of U > 0.667. When grading code elegance, Group
17–20 did not agree for any of the 40 assignments they graded. Two assignments, 568 and 616, out
of the 40 that group 17–20 graded were one grade bound away. Assignment 616 was awarded the
same grades as correctness, with three awarding an F and the fourth awarding a D-. Assignment
568 was awarded grades at the opposite end of the spectrum, with three assessors awarding an A+
and one awarding an A. The assessor that awarded an A gave the feedback that ‘… some functions
are very long…’, whereas two of the assessors who awarded the A+ praised the student for their
implementation, while the third did not provide any feedback with their grade.

The largest variance in grades awarded by group 17–20 for code elegance was for assignment
458; the grades awarded were C, B-, A- and A++. Participant 17, who awarded the A-, gave the

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:19

feedback ‘Solid implementation on both core and challenge class’. Participant 20, who was awarded
the C, commented on the repetitiveness of the code and how functions could be refactored to
the superclass. These differences in awarded grades and the associated feedback can suggest how
grading subjective elements of assignments can introduce a higher variance in the awarded grades.

This trend of a few assignments being somewhat consistently graded and many being inconsis-
tently graded holds for readability and documentation, with Appendix C showing the grade range
for each skill. Figure 9 shows this trend for each grade, with the middle grades (D—B+) more likely
to have a larger variance in awarded grades across all four skills. While the middle grades showed no
cases of any grading achieving acceptable levels of consistency, the high (A++ to A) and low ranges
(F—D-) displayed at least some instances of grader agreement. Grades F and D- have the largest
portions of grade ranges, being less than or equal to two. At the other end of the grade spectrum,
grades A, A+ and A++ have a smaller proportion of grade ranges that are less than or equal to two.

5.4 Grading Consistency of Individual Graders (RQ2)
5.4.1 Grade Range. As part of our study, we purposefully duplicated an assignment within the

second batch to allow us to evaluate the consistency of the individual graders. 22 participants did
not notice the duplicate in the second batch; six participants (1, 2, 10, 11, 20, 25) did. Figure 10
shows the distance between the 14 awarded grades when regarding the same assignment for a
second time, for each participant for each skill.

The average absolute distance between grades when regarding the same assignment a second
time was correctness = 1.786, code elegance = 1.250, readability = 1.357 and documentation = 1.571.
These results show that for the consistency of the individual graders in our study, on average, they
were between one and two grades apart between batches one and two, with a higher variability in
correctness and documentation, and were more consistent with themselves when grading code
elegance or readability.

5.4.2 Post-Study Interview. During the post-study interview, 24 out of 28 graders stated that they
graded consistently. However, our results show that when grading a repeated assignment at a later
period, only two participants graded the duplicated assignment the same across all skills. Only two
participants, three and ten, provided the same grade in both batches for all four skills. Participant
10 noticed the duplicate, and during their post-study interview, participant 10 mentioned that
they noticed the duplicate and changed the grades for both batches to F as they believed it was
plagiarism, while the other five participants followed the instruction that if you notice a duplicate,
treat it as you are grading it the first time; as this was a pair programming assignment, duplicates
could still exist within the dataset. Participant 3 did not notice the duplicate and said during their
post-study interview, ‘…like some assignments used the same animals… but [the implementation]
was a little bit different so not like an exact copy of those two assignments…’.

In an effort to improve their consistency, 20 of the participants opted to review their grades.
However, only 10 participants had a two or less grade difference between grading the first and
second batches. While many opted to review their grades, many only gave a cursory review or
reviewed if they thought they graded an assignment exceptionally high. Participant 12 stated, ‘…
not too much time on all the of the like remarking all of them, just spending a minute on each
assignment…’ and Participant 11 said ‘…if I graded someone high. I’ll go back and see if I graded
anyone else at the same level…’. While the participants’ reviewing process may have increased
their consistency for the grades they reviewed, it did not improve their overall consistency.

5.4.3 Grading Experience. Figure 11 shows the distribution by grading experience of the absolute
distance between grades awarded in batch one and batch two for each of the four skills. Those with
no prior grading experience have the largest difference between grades across all skills. Those with

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:20 M. Messer et al.

Fig. 10. The distance between the awarded grades for each skill in batch one and batch two for each
participant when grading the duplicated assignment. The underlined participants indicated that they noticed
the duplicate during the post-study interview. Participant 21 did not supply a grade for documentation in
batch two, so it only shows one grade.

1–2 years of grading experience have atmost a difference of three grades between the first and second
time they graded the duplicated assignment, and those with one or more years of grading have a
grade difference of less than one for most skills. However, readability and documentation for those
with 2 or 3 years of grading experience had a maximum grade distance of two or three, respectively.

6 Discussion
6.1 How Consistently Does a Group of Graders Apply a Rubric? (RQ1)
Consistency was very poor overall. Even the best values achieved for Krippendorff’s U reflect
distinctly poor consistency, with none of our seven groups of graders achieving an U > 0.667, the
lower bound to consider reliable [35], with the average U = 0.105 across all groups and skills.

While the correctness of a program is, in most cases, inherently objective, there can be elements
of subjectiveness, especially within open-ended coursework assignments. The nature of open-ended
assignments, where students decide how they implement a set of features using their ideas and
creativity, can make it difficult for the groups of assessors to grade consistently. However, open-
ended assignments allow instructors to design assignments that allow students to explore their
creativity, which is a key educational goal [14, 52, 62], mimic professional development experiences,
and improve students’ self-efficacy in programming [57].

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:21

Fig. 11. This figure shows the distribution of the absolute distance between the awarded grades in batch one
and batch two as a measure of the participant’s self-consistency for the participant’s grading experience and
all four skills. The box plots’ box shows the inter-quartile range, while the whiskers extend to points within
1.5 of the inter-quartile range. The bar plot shows the proportion of participants with the varying levels of
grading experience.

Furthermore, the subjectiveness of open-ended programming assignments extends not just to
whether the code is correct and meets the requirements but to the quality of the code itself [32].
While some aspects of code quality are shared, such as consistent indentation and meaningful
variable names, the nuances of programming style and design are individualised and remain active
research topics not just within computer science education [33, 60], but within professional practice
as well [39].

While having experienced graders may increase the consistency of assessment, this is not always
possible as the typical demographics of teaching assistants are undergraduate, master’s or PhD
students [44, 54, 55, 63], and many are new to assessment and have little experience; which is
the case in our study. Having those with many years of grading experience is typically rare, as
undergraduate teaching assistants are typically late-stage and are about to graduate, and graduate
teaching assistants within Europe typically graduate within 3 to 4 years.

However, those with 1 year of grading experience had similar inter-rater reliability to those with
no previous grading experience, indicating that more grading experience alone will not improve
the grading consistency to an acceptable level. This supports the idea that to conduct a consistent
assessment, assessors require adequate training to interpret and apply a rubric [36, 54], and that
assessment is complex and intuitive [7, 28].

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:22 M. Messer et al.

Rubric design plays an important role in the validity and consistency of the rubric [29]. The rubric
provided to our participants follows the standard practice for rubric design [2, 51] and includes
evaluation criteria, the definitions of quality and a scoring strategy.

However, as with the subjectiveness of programming, especially with open-ended assessment and
code quality, as we have previously discussed, aspects of the rubric are subjective. Some aspects of
the rubric are very clear, especially for the grades at either end of the grade spectrum. For example,
for correctness, an F is defined as ‘Significant details of a task are violated, or the program often
exhibits incorrect behaviour’. and an A+ − A++ is defined as ‘The application works as described
in the assignment; all base tasks are completed; the implementation demonstrates originality,
creativity and technical excellence…’.

Meanwhile, for the middle grades, the rubric becomes more subjective. For example, for cor-
rectness, a D is defined as ‘Some tasks are incomplete; the application functions incorrectly on
some inputs/actions’. and a C is defined as ‘Minor details of the task(s) are violated; the application
functions correctly on the majority inputs/actions’. Other examples from the rubric include D—code
elegance, ‘The application is unnecessarily complex…’, D—documentation, ‘…the code is overly
commented’, D—readability, ‘The application has more than two issues that make the program
difficult to understand’. The lack of specificity in the rubric, especially for the middle grades, could
have impacted the consistency of the grading, as different assessors can have differing opinions
on what constitutes ‘some’ and ‘majority’ correct inputs and if the source code is unnecessarily
complex, over-documented or difficult to understand.

There is likely to be less disagreement at either end of the grading spectrum, an F or an A+/A++,
though rarely do any of these have complete agreement unless the submissions do not compile
or do not contain any student code, with most groups being within one or two grades at these
grades. Meanwhile, the middle grades are not graded consistently, with most groups having a grade
difference of three or more.

While a more explicit rubric may improve the consistency of the grading, it could reduce the
validity of the assignment [29], as a more explicit rubric would require a less open and creative
assignment, limiting the students’ self-efficacy [57] and learning opportunities. Furthermore, even
an explicit and analytic rubric may not infer consistent assessment, as grading consistently can be
extremely difficult even with well-designed assessment criteria [28]. However, future work should
investigate which aspects of code quality can be explicitly defined in the rubric and if defining these
objectively improves consistency when grading open-ended assignments. Explicitly defined criteria
could include explicitly defining code style conventions students should follow, such as naming
conventions, avoiding single-character variable names, indentation, and spaces around operators.

6.2 Are Individual Graders Consistent at Applying a Rubric? (RQ2)
Compared to the consistency of multiple graders, readability, code elegance, and documentation
achieved a higher individual consistency. The higher consistency of code elegance, readability, and
documentation could be due to our participants being experienced programmers and having a
well-defined internal preference for code elegance, readability and documentation [38, 45].

The lower consistency of correctness could be due to many of our participants having not graded
before, which is typical when using teaching assistants [44, 54, 55, 63]. While some may have
completed the assignment as a student, they would have only seen a limited set of other submissions.
Another aspect could be the participants having to learn the specificity of what makes a submission
good for this specific assignment; as the assignment is open-ended many different solutions can
meet the requirements to the same standard, but with the specificity of the rubric, that standard is
up interpretation by the grader. Similar to multiple grader consistency, a more specific rubric could
increase the consistency, but at the cost of the validity [29] and creativity of the assignment.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:23

Having more grading experience can lead to being more internally consistent when grading
similar work, and supports the emphasis on providing appropriate training for teaching assistants
[36, 63]. However, grading experience alone does not completely mitigate errors in consistency
with experienced graders [54], especially when assessing subjective aspects like documentation
and readability.

6.3 Implications for Human Grading
We have found that, in our study, typical graders are very inconsistent with each other and also
are inconsistent with themselves. This suggests that current grading practices that use multiple
assessors are likely to be quite unfair, which can lead to unfair outcomes for the students and
demotivation among the students. Many suggest the importance of training assessors [8, 36, 63],
and it may be that this is a necessary step to ensure fairness in grading.

We believe that our result warrants further consideration and investigation. Programming
assignments are supposed to be relatively objectively judgeable and yet our research suggests
that even with a shared rubric, inconsistency is the default outcome, which supports the idea that
grading is ‘complex, intuitive and tacit’ [7]. This also lends support to the idea of investigating
alternative grading approaches, such as those suggested by Decker et al. [17] for making grading
more equitable. They propose changing the grading scales (such as making them coarser) in order
to speed up grading and reduce disputes about exact grading scores—although our study already
uses a coarser scale than 0–100 and found inconsistency even on a coarser scale.

6.4 Implications for Automated Grading
Part of our motivation for conducting this study was to get a ‘gold standard’ baseline human work
in order to later investigate the accuracy of automated grading. However, our results suggest that
the idea of a gold standard of human grading may be flawed, given that human graders cannot agree
on the grade to give a piece of student work, even with themselves: inconsistency was high between
and ‘within’ individual graders. This has strong implications for the acceptability of automated
grading. One could argue that automated grading (including AI-based grading) needs to be within
the same range as human grading to be considered acceptable, and since the range for human
grading is wide, automated grading is more likely to be considered sufficient. However, this is
an unconvincing argument. Rather than using the weakness of human grading as a convenient,
low bar for assessing auto-graders, we—as a teaching community—should recognise and address
the serious problem and try to find ways to improve the fundamental practice of grading student
assignments. Automated grading may or may not have a part in this. One of the contributions of
this article is a public release of our dataset, including the human grades, which can be used by all
researchers for future work on automated grading.

7 Threats to Validity
7.1 Internal
One limitation of this study is that the participants knew it was a study that was not providing real
grades and did not affect student outcomes. However, based on the interviews, many participants
treated it as if they were marking for real, with many students opting to review their grades. The
participants were aware that this was a study into grading consistency and, as such, may have
altered their behaviour to maximise their internal consistency. While the participants may have
altered their behaviour, our results still show significant inconsistency within their grades between
a group of graders and when they graded an identical assignment later.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:24 M. Messer et al.

The rubric that was used in the original coursework provided generic descriptions for each
grade, which may be less clear and well-defined than point-based rubrics that provide a detailed
rubric and the points associated with each specific element. However, as the rubric was provided
to the students when they originally submitted the coursework, we decided to mimic real-world
assessment at our institution to provide an accurate insight into the consistency of assessment
within this course.

We opted to provide only one identical submission in the second batch, which limits the validity
of our evaluation of the internal consistency of human graders. We chose to only have one repeat
to maximise the number of graded unique submissions, allowing for a more robust dataset when
conducting future work. While only having one repeated assignment limits the validity of this part
of our experiment, the results show that even with our small sample size, with each group of four
graders grading a different duplicate, nearly all participants did not provide the same grade when
grading the assignment a second time.

As we are using historical assignments from the CS1 programming course at our institution and
many of our participants took that course during their undergraduate, there is a remote chance
that the participants graded their own work. As these assignments were completely anonymised
before undertaking this study, we could not tell if we asked the participants to mark their work.
However, as the dataset of anonymised consists of over 600 submissions, the chances that one of
the 272 graded submissions will be graded by its author is very low.

7.2 External
Our raw data and participants were all captured from one institution and one course, which limits
how these results can be applied to other institutions or courses. Programming courses which use
different rubrics, especially those that are more specific than the one provided in Appendix B, could
have increased consistency. Prior work, such as by Passonneau et al. [49] and Jönsson et al. [28],
suggests that simply making the rubric more detailed may not necessarily produce more consistent
grading. Future work should evaluate how the specificity of the rubric affects consistency and the
ability to provide open-ended assignments. Furthermore, different groups of graders, whether that
be undergraduate, postgraduate teaching assistants, instructors, or a combination of all three, could
result in varying grading consistency. Further work could investigate how different combinations
of graders, training, and other methods can result in providing grades that are consistently applied
between the group members.

As assessment is such a core aspect of education and students’ prospects, we believe our results
highlight a fundamental issue with how summative assessment is currently conducted, whether that
is caused by instructors not providing detailed rubrics or utilising multiple teaching assistants with
limited training in assessment. This fundamental issue is further supported by many institutions
implementing rigorous assessment procedures to ensure that the assessment practices within their
institutions are fair to all students, and indicates that rubrics should be seen as potentially useful
addition to the range of assessment tools available and not a solution for all concerns raised by
students in terms for quality, consistency and usefulness [15].

8 Conclusion
Inconsistent grading can impact students throughout their education and their post-education
opportunities. Receiving inconsistent grades can confuse many students about why they received
a particular grade, especially when comparing their grades with those of their peers, and affect
their progression through their degree, especially if they do not meet course prerequisites, as well
as affecting their sense of justice [47]. Post-education, inconsistent grading can affect a student’s

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:25

career prospects, as many companies utilise degree classification or average grade in their hiring
process [61].

Our study investigated the consistency of human grading by asking 28 participants to grade 272
authentic student assignments. We selected participants from our institution who were PhD or
master’s students with more than 3 years of programming knowledge; previous grading experience
was not a requirement. This selection of participants mimics the demographics of the teaching
assistants who complete the grading at many institutions, especially those with large cohorts, where
the individual module/class leaders cannot feasibly grade the cohort in the required timeframe for
feedback to be meaningful.

We split our 28 participants into groups of 4; each group graded the same 40 assignments in two
batches of 20, with a two-week gap between them. To investigate the consistency of using multiple
graders, we evaluated the inter-rater reliability using Krippendorff’sU [35], which factors the ordinal
nature of grades by applying weights to the metric calculation. We found that our participants
provided inconsistent grades across correctness, code elegance, readability and documentation,
with the most consistent being correctness with an average U = 0.2 and code elegance, readability
and documentation all having an average U < 0.1 – where an U ≥ 0.667 is required to draw tentative
conclusions and an U > 0.8 suggests acceptable consistency [35]. This indicates a very high level of
inconsistency of grading between graders.

In addition to investigating the consistency of multiple graders, we analysed the individual
graders’ self-consistency by duplicating one of the assignments in the first batch to the second batch
with a different submission ID and measuring the difference between the grades they awarded in the
first batch, and the grade they awarded in the second batch. Only one participant did not notice the
duplicate assignment and graded consistently for all four skills. We found that an individual’s self-
consistency was, on average, higher for the subjective elements under assessment, code elegance,
readability and documentation, compared to correctness, which was more inconsistent. The average
grade difference was 1.79 for correctness, and the subjective elements all had an average grade
difference of less than 1.6.

While these results are only from one assignment at one institution, which utilised a generic
rubric, our study supports the notion that assessment is complex and intuitive [7] and that having a
well-designed open-ended assignment may not imply consistent evaluation [29]. Our results suggest
that there is a balance to be found between the openness of the assignment and the specificity of
the rubric, and future research should investigate how aspects of code quality and correctness can
be explicitly defined while allowing for an open-ended assignment. It also highlights that further
research is required to improve the consistency of a group of graders and individual graders when
grading open-ended programming assignments, whether it be alternative grading practices or
methods of effectively training undergraduate and graduate teaching assistants.

8.1 Future Work
As assessment plays a crucial role in a student’s education and future career prospects, we rec-
ommend that further research be undertaken on how to improve the consistency of grading
programming assignments, whether that be investigating rubric design, the importance of assessor
training, the use of alternative assessment approaches such as comparative judgement, or automated
assessment tools.

In the future, we plan on expanding on this work by evaluating the consistency of the feedback
provided as part of this study, including the topics on which the assessors gave feedback and the
quality of their feedback.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:26 M. Messer et al.

Acknowledgements
We thank the King’s College Teaching Fund for providing the funding necessary to undertake this
research. We also thank Jeffery Raphael for providing the original data and Zara Lim and Nikolaj
Jensen for anonymising the student assignments dataset. We thank Carlos Matos and Nuno Barreiro
for their comments and ideas throughout the project and Mark Guzdial and Jarmoir Savelka for
proofreading and commenting on the final draft. We thank the reviewers for their detailed and
constructive reviews.

Data Availability
All our raw data and data analysis notebooks can be found on GitHub5. The Menagerie dataset,
which includes all the anonymised student submissions and all the human grades gathered during
this study, can be found on the Open Science Foundation6.

References
[1] Tuukka Ahoniemi, Essi Lahtinen, and Tommi Reinikainen. 2008. Improving pedagogical feedback and objective

grading. In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’08). ACM,
New York, NY, 72–76. DOI: https://doi.org/10.1145/1352135.1352162.

[2] Heidi Goodrich Andrade. 2005. Teaching with rubrics: The good, the bad, and the ugly. College Teaching 53, 1, (Jan.
2005), 27–31. DOI: https://doi.org/10.3200/CTCH.53.1.27-31

[3] Marcus Messer, Neil Brown, Michael Kölling, and Miaojing Shi. 2024. How Consistent Are Human Graders? Pre-
registration. Retrieved from https://osf.io/3nc7p/?view_only=d37833bc919d4a1f96d0fa0dcd43b5c7

[4] Tapio Auvinen. 2011. Rubyric. In Proceedings of the 11th Koli Calling International Conference on Computing Education
Research (Koli Calling ’11). ACM, New York, NY, 102–106. DOI: https://doi.org/10.1145/2094131.2094152

[5] David Azcona and Alan Smeaton. 2020. +5 Million Python & Bash Programming Submissions for 5 Courses & Grades
for Computer-Based Exams over 3 academic years. DOI: https://doi.org/10.6084/m9.figshare.12610958.v1

[6] David John Barnes and Michael Kölling. 2006. Objects First with Java: A Practical Introduction Using BlueJ . Pear-
son/Prentice Hall, London, United Kingdom.

[7] Sue Bloxham, Birgit den Outer, Jane Hudson, and Margaret Price. 2016. Let’s stop the pretence of consistent marking:
Exploring the multiple limitations of assessment criteria. Assessment & Evaluation in Higher Education 41, 3 (2016),
466–481. DOI: https://doi.org/10.1080/02602938.2015.1024607

[8] Rodrigo Borela and Nimisha Roy. 2023. Creating equitable grading practices with rubrics: A teaching assistant
training activity. In Proceedings of the 2023 ACM Conference on International Computing Education Research (ICER ’23).
Association for Computing Machinery, New York, NY. Vol. 2, 26–27. DOI: https://doi.org/10.1145/3568812.3603485

[9] Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle van Assema, Rodrigo Duran, Sara Hooshangi, Johan Jeuring, Keuning
Hieke, Kleiner Carsten, and Bonnie MacKellar. 2018. “I know it when I see it” perceptions of code quality: ITiCSE
’17 working group report. In Proceedings of the 2017 ITiCSE Conference on Working Group Reports (ITiCSE-WGR ’17).
ACM, New York, NY, 70–85. DOI: https://doi.org/10.1145/3174781.3174785

[10] Carla E. Brodley. 2022. Why universities must resist GPA-based enrollment caps in the face of surging enrollments.
Communications of the ACM 65, 8 (Jul. 2022), 20–22. DOI: https://doi.org/10.1145/3544547

[11] Susan M. Brookhart. 2018. Appropriate criteria: Key to effective rubrics. Frontiers in Education 3 (2018), 22.
[12] Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting. 2014. Blackbox: A large scale repository of novice

programmers’ activity. In Proceedings of the 45th ACM Technical Symposium on Computer Science Education. ACM,
New York, NY, 223–228. DOI: https://doi.org/10.1145/2538862.2538924

[13] Santiago Castro. 2017. Fast Krippendorff: Fast computation of Krippendorff’s alpha agreement measure. Retrieved
from https://github.com/pln-fing-udelar/fast-krippendorff

[14] Serene Chan and Mantak Yuen. 2014. Personal and environmental factors affecting teachers’ creativity-fostering
practices in Hong Kong. Thinking Skills and Creativity 12 (2014), 69–77. DOI: https://doi.org/10.1016/j.tsc.2014.02.003

[15] Andrea Cockett and Carole Jackson. 2018. The use of assessment rubrics to enhance feedback in higher education: An
integrative literature review. Nurse Education Today 69, (Oct. 2018), 8–13. DOI: https://doi.org/10.1016/J.NEDT.2018.
06.022

5Data analysis repository: https://anonymous.4open.science/r/Consistency_In_Grading_Analysis-AC73/README.md.
6Menagerie: https://osf.io/q8jbt/.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

https://doi.org/10.1145/1352135.1352162
https://doi.org/10.3200/CTCH.53.1.27-31
https://osf.io/3nc7p/?view_only=d37833bc919d4a1f96d0fa0dcd43b5c7
https://osf.io/3nc7p/?view_only=d37833bc919d4a1f96d0fa0dcd43b5c7
https://doi.org/10.1145/2094131.2094152
https://doi.org/10.6084/m9.figshare.12610958.v1
https://doi.org/10.1080/02602938.2015.1024607
https://doi.org/10.1145/3568812.3603485
https://doi.org/10.1145/3174781.3174785
https://doi.org/10.1145/3544547
https://doi.org/10.1145/2538862.2538924
https://github.com/pln-fing-udelar/fast-krippendorff
https://github.com/pln-fing-udelar/fast-krippendorff
https://doi.org/10.1016/j.tsc.2014.02.003
https://doi.org/10.1016/J.NEDT.2018.06.022
https://doi.org/10.1016/J.NEDT.2018.06.022
https://anonymous.4open.science/r/Consistency_In_Grading_Analysis-AC73/README.md.
https://osf.io/q8jbt/.

How Consistent Are Humans When Grading Programming Assignments? 49:27

[16] Adrian de Freitas, Joel Coffman, Michelle de Freitas, Justin Wilson, and Troy Weingart. 2023. FalconCode: A multiyear
dataset of python code samples from an introductory computer science course. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education. ACM, New York, NY, 938–944. DOI: https://doi.org/10.1145/
3545945.3569822

[17] Adrienne Decker, Stephen H. Edwards, Brian M. McSkimming, Bob Edmison, Audrey Rorrer, and Manuel A. Pérez
Quiñones. 2024. Transforming grading practices in the computing education community. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2024). ACM, New York, NY, 276–282. DOI:
https://doi.org/10.1145/3626252.3630953

[18] Jacob Doughty, Zipiao Wan, Anishka Bompelli, Jubahed Qayum, Taozhi Wang, Juran Zhang, Yujia Zheng, Aidan
Doyle, Pragnya Sridhar, Arav Agarwal, et al. 2024. A comparative study of AI-generated (GPT-4) and human-crafted
MCQs in programming education. In AWWA’s Annual Conference & Exposition (ACE ’24). ACM, New York, NY, USA,
114–123. DOI: https://doi.org/10.1145/3636243.3636256

[19] Sabine S. S. Dunbar. 2018. Consistency in grading clinical skills. Nurse Education in Practice 31 (2018), 136–142.
[20] Bobbie Lynn Eicher and David Joyner. 2021. Components of assessments and grading at scale. In Proceedings of the 8th

ACM Conference on Learning @ Scale (L@S ’21). ACM, New York, NY, 303–306. DOI: https://doi.org/10.1145/3430895.
3460165

[21] Kathi Fisler. 2014. The recurring rainfall problem. In Proceedings of the 10th Annual Conference on International
Computing Education Research. ACM, New York, NY, 35–42. DOI: https://doi.org/10.1145/2632320.2632346

[22] Fay Fransella, Richard Bell, and Don Bannister. 2004. A Manual for Repertory Grid Technique. John Wiley & Sons.
[23] Alex Gerdes, Johan T. Jeuring, and Bastiaan J. Heeren. 2010. Using strategies for assessment of programming exercises.

In Proceedings of the 41st ACM Technical Symposium on Computer Science Education (SIGCSE ’10). ACM, New York,
NY, 441–445. DOI: https://doi.org/10.1145/1734263.1734412

[24] Nirit Glazer. 2014. Formative plus summative assessment in large undergraduate courses: Why both? International
Journal of Teaching and Learning in Higher Education 26, 2 (2014), 276–286.

[25] Kilem Li Gwet. 2008. Computing inter-rater reliability and its variance in the presence of high agreement. The British
Journal of Mathematical and Statistical Psychology 61, 1 (2008), 29–48. DOI: https://doi.org/10.1348/000711006X126600

[26] Charles Henderson, Edit Yerushalmi, Vince H. Kuo, Patricia Heller, and Kenneth Heller. 2004. Grading student problem
solutions: The challenge of sending a consistent message. American Journal of Physics 72, 2 (Feb. 2004), 164–169. DOI:
https://doi.org/10.1119/1.1634963

[27] Nathan M. Hicks and Heidi A. Diefes-Dux. 2017. Grader consistency in using standards-based rubrics. In Proceedings
of the 2017 ASEE Annual Conference & Exposition.

[28] Anders Jönsson, Andreia Balan, and Eva Hartell. 2021. Analytic or holistic? A study about how to increase the
agreement in teachers’ grading. Assessment in Education: Principles, Policy & Practice 28, 3 (2021), 212–227. DOI:
https://doi.org/10.1080/0969594X.2021.1884041

[29] Anders Jönsson and Gunilla Svingby. 2007. The use of scoring rubrics: Reliability, validity and educational conse-
quences. Educational Research Review 2, 2 (2007), 130–144. DOI: https://doi.org/10.1016/j.edurev.2007.05.002

[30] David Kane, James Williams, and Gillian Cappuccini-Ansfield. 2008. Student Satisfaction Surveys: The Value in Taking
an Historical Perspective. 2 (Jul. 2008), 135–155. DOI: https://doi.org/10.1080/13538320802278347

[31] Jennifer S. Kay. 2022. Peer grading without protest: The SPARK approach to summative peer assessment. In Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education (SIGCSE ’22). ACM, New York, NY, 119–125.
DOI: https://doi.org/10.1145/3478431.3499284

[32] Diana Kirk, Andrew Luxton-Reilly, and Ewan Tempero. 2024. Code style != code quality. In Proceedings of the 2024 on
ACM Virtual Global Computing Education Conference V. 1 (SIGCSE Virtual ’24). ACM, New York, NY, 267–270. DOI:
https://doi.org/10.1145/3649165.3703621

[33] Diana Kirk, Andrew Luxton-Reilly, and Ewan Tempero. 2024. A literature-informed model for code style principles to
support teachers of text-based programming. In Proceedings of the 26th Australasian Computing Education Conference
(ACE ’24). ACM, New York, NY, 134–143. DOI: https://doi.org/10.1145/3636243.3636258

[34] Peter T. Knight. 2002. Summative assessment in higher education: Practices in disarray. Studies in Higher Education
27, 3 (2002), 275–286.

[35] Klaus Krippendorff. 2013. Content Analysis: An Introduction to Its Methodology (3rd ed.). Sage Publications, Los Angeles.
[36] Nynne Grauslund Kristiansen, Sebastian Mateos Nicolajsen, and Claus Brabrand. 2024. Feedback on student

programming assignments: Teaching assistants vs automated assessment tool. In Proceedings of the 23rd Koli
Calling International Conference on Computing Education Research (Koli Calling ’23). ACM, New York, NY. DOI:
https://doi.org/10.1145/3631802.3631804

[37] Kathleen J. Lehman, Julia Rose Karpicz, Veronika Rozhenkova, Jamelia Harris, and Tomoko M. Nakajima. 2021.
Growing enrollments require us to do more: Perspectives on broadening participation during an undergraduate

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

https://doi.org/10.1145/3545945.3569822
https://doi.org/10.1145/3545945.3569822
https://doi.org/10.1145/3626252.3630953
https://doi.org/10.1145/3636243.3636256
https://doi.org/10.1145/3430895.3460165
https://doi.org/10.1145/3430895.3460165
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.1145/1734263.1734412
https://doi.org/10.1348/000711006X126600
https://doi.org/10.1119/1.1634963
https://doi.org/10.1080/0969594X.2021.1884041
https://doi.org/10.1016/j.edurev.2007.05.002
https://doi.org/10.1080/13538320802278347
https://doi.org/10.1145/3478431.3499284
https://doi.org/10.1145/3649165.3703621
https://doi.org/10.1145/3636243.3636258
https://doi.org/10.1145/3631802.3631804

49:28 M. Messer et al.

computing enrollment boom. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
(SIGCSE ’21). ACM, New York, NY, 809–815. DOI: https://doi.org/10.1145/3408877.3432370

[38] Xuechao Li, Po-Chou Shih, and Evans David. 2018. The effect of software programmers’ personality on programming
performance. In Proceedings of the 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD),
209–213. DOI: https://doi.org/10.1109/ICAIBD.2018.8396196

[39] Jenny T. Liang, Maryam Arab, Minhyuk Ko, Amy J. Ko, and Thomas D. LaToza. 2023. A qualitative study on the
implementation design decisions of developers. In Proceedings of the 45th International Conference on Software
Engineering (ICSE ’23). IEEE Press, 435–447. DOI: https://doi.org/10.1109/ICSE48619.2023.00047

[40] Soohyun Nam Liao, William G. Griswold, and Leo Porter. 2017. Impact of class size on student evaluations for
traditional and peer instruction classrooms. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’17). ACM, New York, NY, 375–380. DOI: https://doi.org/10.1145/3017680.3017764

[41] Ian C. McManus, Margaret Thompson, and Jennifer Mollon. 2006. Assessment of examiner leniency and stringency
(‘hawk-dove effect’) in the MRCP(UK) clinical examination (PACES) using multi-facet rasch modelling. BMC Medical
Education 6, 1 (2006), 42. DOI: https://doi.org/10.1186/1472-6920-6-42

[42] Marcus Messer, Neil C. C. Brown, Michael Kölling, and Miaojing Shi. 2024. Automated grading and feedback tools for
programming education: A systematic review. ACM Transactions on Computer Education 24, 1, Article 10 (Feb. 2024),
43 pages. DOI: https://doi.org/10.1145/3636515

[43] Gosia Migut and Ruben Wiersma. 2020. Are we consistent? The effects of digitized exams grading. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education (SIGCSE ’20). ACM, New York, NY, 1338. DOI:
https://doi.org/10.1145/3328778.3372630

[44] Diba Mirza, Phillip T. Conrad, Christian Lloyd, Ziad Matni, and Arthur Gatin. 2019. Undergraduate teaching assistants
in computer science: A systematic literature review. In Proceedings of the 2019 ACM Conference on International
Computing Education Research (ICER ’19). ACM, New York, NY, 31–40. DOI: https://doi.org/10.1145/3291279.3339422

[45] Andrew Mohan and Nicolas Gold. 2004. Programming style changes in evolving source code. In Proceedings of the 12th
IEEE International Workshop on Program Comprehension, 236–240. DOI: https://doi.org/10.1109/WPC.2004.1311066

[46] Aida Mustapha, Noor Azah Samsudin, Nurieze Arbaiy, Rozlini Mohammed, and Isredza Rahmi Hamid. 2016. Generic
assessment rubrics for computer programming courses. Turkish Online Journal of Educational Technology - TOJET 15,
1 (Jan. 2016), 53–68.

[47] Paul L. Nesbit and Suzan Burton. 2006. Student justice perceptions following assignment feedback. Assessment &
Evaluation in Higher Education 31, 6 (2006), 655–670. DOI: https://doi.org/10.1080/02602930600760868

[48] Tom Neutens, Kris Coolsaet, and Francis Wyffels. 2022. Assessment of code, which aspects do teachers consider
and how are they valued? ACM Transactions on Computer Education 22, 4, Article 46 (Sep. 2022), 27 pages. DOI:
https://doi.org/10.1145/3517133

[49] Rebecca J. Passonneau, Kathleen Koenig, Zhaohui Li, and Josephine Soddano. 2023. The ideal versus the real deal
in assessment of physics lab report writing. European Journal of Applied Sciences 11, 2 (Apr. 2023), 626–644. DOI:
https://doi.org/10.14738/aivp.112.14406

[50] Sawan Rai, Ramesh Chandra Belwal, and Atul Gupta. 2022. A review on source code documentation. ACM Transactions
on Intelligent System Technology 13, 5, Article 84 (Jun. 2022), 44 pages. DOI: https://doi.org/10.1145/3519312

[51] Y. Malini Reddy and Heidi Andrade. 2010. A review of rubric use in higher education. Assessment & Evaluation in
Higher Education 35, 4 (2010), 435–448. DOI: https://doi.org/10.1080/02602930902862859

[52] Carmen Richardson and Punya Mishra. 2018. Learning environments that support student creativity: Developing the
SCALE. Thinking Skills and Creativity 27 (2018), 45–54. DOI: https://doi.org/10.1016/j.tsc.2017.11.004

[53] Emma Riese. 2018. Teaching assistants’ experiences of lab sessions in introductory computer science courses. In
Proceedings of the 2018 IEEE Frontiers in Education Conference (FIE), 1–5. DOI: https://doi.org/10.1109/FIE.2018.8659243

[54] Emma Riese and Olle Bälter. 2022. A qualitative study of experienced course coordinators’ perspectives on assessment
in introductory programming courses for non-CS majors. ACM Transactions on Computer Education 22, 4, Article 45
(Sep. 2022). 29 pages. DOI: https://doi.org/10.1145/3517134

[55] Emma Riese, Madeleine Lorås, Martin Ukrop, and Tomáš Effenberger. 2021. Challenges faced by teaching assistants in
computer science education across Europe. In Proceedings of the 26th ACM Conference on Innovation and Technology
in Computer Science Education V. 1 (ITiCSE ’21). ACM, New York, NY, 547–553. DOI: https://doi.org/10.1145/3430665.
3456304

[56] Ilona Rinne. 2024. Same grade for different reasons, different grades for the same reason? Assessment & Evaluation in
Higher Education 49, 2 (2024), 220–232. DOI: https://doi.org/10.1080/02602938.2023.2203883

[57] Sadia Sharmin, Daniel Zingaro, Lisa Zhang, and Clare Brett. 2019. Impact of open-ended assignments on student
self-efficacy in CS1. In Proceedings of the ACM Conference on Global Computing Education (CompEd ’19). ACM, New
York, NY, 215–221. DOI: https://doi.org/10.1145/3300115.3309532

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

https://doi.org/10.1145/3408877.3432370
https://doi.org/10.1109/ICAIBD.2018.8396196
https://doi.org/10.1109/ICSE48619.2023.00047
https://doi.org/10.1145/3017680.3017764
https://doi.org/10.1186/1472-6920-6-42
https://doi.org/10.1145/3636515
https://doi.org/10.1145/3328778.3372630
https://doi.org/10.1145/3291279.3339422
https://doi.org/10.1109/WPC.2004.1311066
https://doi.org/10.1080/02602930600760868
https://doi.org/10.1145/3517133
https://doi.org/10.14738/aivp.112.14406
https://doi.org/10.1145/3519312
https://doi.org/10.1080/02602930902862859
https://doi.org/10.1016/j.tsc.2017.11.004
https://doi.org/10.1109/FIE.2018.8659243
https://doi.org/10.1145/3517134
https://doi.org/10.1145/3430665.3456304
https://doi.org/10.1145/3430665.3456304
https://doi.org/10.1080/02602938.2023.2203883
https://doi.org/10.1145/3300115.3309532

How Consistent Are Humans When Grading Programming Assignments? 49:29

[58] Arjun Singh, Sergey Karayev, Kevin Gutowski, and Pieter Abbeel. 2017. Gradescope: A fast, flexible, and fair system
for scalable assessment of handwritten work. In Proceedings of the 4th (2017) ACM Conference on Learning @ Scale
(L@S ’17). ACM, New York, NY, 81–88. DOI: https://doi.org/10.1145/3051457.3051466

[59] Elliot Soloway. 1986. Learning to program = learning to construct mechanisms and explanations. Communications of
the ACM 29, 9 (1986), 850–858. DOI: https://doi.org/10.1145/6592.6594

[60] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2016. Designing a rubric for feedback on code quality in
programming courses. In Proceedings of the 16th Koli Calling International Conference on Computing Education Research
(Koli Calling ’16). ACM, New York, NY, 160–164. DOI: https://doi.org/10.1145/2999541.2999555

[61] Anna Stepanova, Alexis Weaver, Joanna Lahey, Gerianne Alexander, and Tracy Hammond. 2021. Hiring CS graduates:
What we learned from employers. ACM Transactions on Computer Education 22, 1, Article 5 (Oct. 2021), 20 pages.
DOI: https://doi.org/10.1145/3474623

[62] Tony Wagner. 2010. The Global Achievement Gap: Why Even Our Best Schools Don’t Teach the New Survival Skills Our
Children Need-and What We Can Do about It . Retrieved from ReadHowYouWant.com

[63] Navé Wald and Tony Harland. 2018. Rethinking the teaching roles and assessment responsibilities of student teaching
assistants. Journal of Further and Higher Education 44, 1 (2018), 43–53. DOI: https://doi.org/10.1080/0309877X.2018.
1499883

[64] Keith Willey and Anne Gardner. 2010. Perceived differences in tutor grading in large classes: Fact or fiction? In
Proceedings of the 2010 IEEE Frontiers in Education Conference (FIE), S2G–1–S2G–6. DOI: https://doi.org/10.1109/FIE.
2010.5673351

[65] Nahathai Wongpakaran, Tinakon Wongpakaran, Danny Wedding, and Kilem L. Gwet. 2013. A comparison of Cohen’s
kappa and Gwet’s AC1 when calculating inter-rater reliability coefficients: A study conducted with personality
disorder samples. BMC Medical Research Methodology 13, 1 (2013), 61. DOI: https://doi.org/10.1186/1471-2288-13-61

[66] Benjamin D. Wright. 1977. Solving measurement problems with the Rasch model. Journal of Educational Measurement
14, 2 (1977), 97–116.

Appendices
A Further Details on the Menagerie Dataset
A.1 Data Processing
This project was a small-group project, with students in groups of two (or rarely three). Each
student was required to submit a copy of the assignment, so all submissions were duplicated at
least once. We first generated hashes to remove these duplicated assignments.

Additionally, we manually reviewed potential duplicates based on the number of classes and
the number of source lines of code; if they were identical, the copy was removed. After removing
the duplicates, we extracted the students’ submissions and removed unnecessary files, such as IDE
property files and .class files.

To anonymise the dataset, we automatically removed the JavaDoc @author tag lines in all
classes. The @author tag is typically used to identify who wrote the class and would be the most
likely place for a student’s name or identification number to appear in the code. To verify that no
further personally identifiable information was left in the source code and to minimise duplicated
submissions, we generated a list of changes made by the student compared to the template code.
Multiple research assistants then used the list of changes to review the submitted code and remove
any remaining personally identifiable information. Our data anonymisation approach limits the
potential for students to be identified from the anonymised submission while retaining all other
information.

During the anonymisation process, we found that many projects opted to include image files as
part of their project. As these cannot be removed as they would interfere with how the submission
is executed and cannot be anonymised easily, we opted to replace all images with equivalently
sized black images.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

https://doi.org/10.1145/3051457.3051466
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/2999541.2999555
https://doi.org/10.1145/3474623
https://doi.org/10.1080/0309877X.2018.1499883
https://doi.org/10.1080/0309877X.2018.1499883
https://doi.org/10.1109/FIE.2010.5673351
https://doi.org/10.1109/FIE.2010.5673351
https://doi.org/10.1186/1471-2288-13-61

49:30 M. Messer et al.

Fig. A1. The UML Diagram of the median-sized submission by class size and source lines of code.

A.2 An In-Depth Example Submission
To give a specific example of an assessment submission, we picked submission 189, which is
median-sized regarding the number of classes implemented and the number of code source lines,
with 19 classes and 1,345 source lines of code. Figure A1 is the final UML of the submission and, by
comparison to Figure 1, shows that the students significantly expanded on the template project.

To complete the tasks, as defined in Section 3.1.1, the students implemented the five species, with
at least two being prey and at least two being predators, using inheritance and abstract classes to
implement shared functionality. All of the five species classes inherit from the Animal class, with
the prey and predators inheriting the Animal class indirectly through their parent classes, Prey and
Predator respectively (which were not present in the original code, and have been added as part
of the object-oriented design by the students). Both the Fox and Hawk species compete for Voles
and Frogs, and Frogs hunt for Crickets by implementing the abstract method hunt from the
Predator class and using instanceof to validate if the adjacent locations contain one of the prey.

To distinguish between male and female animals, the students added a Boolean field and a
function to randomly assign male or female in the Animal class. In each species class, the students

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:31

added functions to validate whether the two members of the same species were adjacent and of
opposite genders. If so, they add a new animal to a space in the two-dimensional array.

To incorporate the time of day into their submission, the students added fields hour, day and
dayNightStatus to the Simulator class, and a isDay field to the Field class. The Cricket is the
only species with different actions during the day or night. During the day and night, the Cricket’s
age increases, and they handle the disease, as explained later in this section, and at night they also
propagate.

For the challenge tasks, the students implemented all three suggestions outlined in Section 3.1.1.
To simulate the lifecycle of plants, the students added an abstract Plant class and concrete class
BambooPlant. The plant propagated based on a probability to produce seeds and was food for the
Panda class, which inherited directly from the Animal class.

The students implemented the four seasons to implement weather, which changed every 90 time
steps. The BambooPlant has different functionality depending on the season. In the spring, it gets
water, grows, and spreads, whereas in the winter, it loses water and does not grow or spread.

Finally, the students implemented a disease that affects all animals by adding an isInfected,
probability of infection and death fields, and functions to catch, spread and check if the animal
is infected to the Animal class. These functions were called as part of each animal’s act methods,
which were responsible for simulating each object at each timestep.

B Rubric
The rubric below was used in our study. It was provided to the students when they originally wrote
their submissions.

B.1 Grade A+–A++ (80–100)
Program Correctness. The application works as described in the assignment; all base tasks are

completed; the implementation demonstrates originality, creativity and technical excellence in the
completion of all challenging tasks the student included documentation describing the challenge
tasks that were completed and how; all submission instructions were followed correctly.

Code Elegance. Student demonstrates excellent use of classes and functions to produce reusable
and maintainable code, where possible, in the base and all of the challenge tasks; the code is efficient
without sacrificing readability and understanding.

Documentation. The documentation is well written, organised and clearly explains what the code
is accomplishing and how; the student documents the contents of each class at the beginning of
the file; the student documents the purpose of each function, i.e., the function’s parameters and
return values at the beginning of each function; the student documents each logical block of code
when performing non-obvious operations; Every file includes header information (e.g., student
name and id).

Readability. The application is exceptionally well organised and very easy to understand; the
student used indentation appropriately and consistently to delineate code blocks; each function
performs a single well defined operation; the student used meaningful identifier names, i.e., good
function and variables names; the student used white space between logical code blocks; the student
uses consistent spacing around operators and variables; classes are self contained with private data
hidden and methods are public only when necessary.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:32 M. Messer et al.

B.2 Grade A (70–79)
Program Correctness. The application works as described in the assignment; all base tasks are

completed; the student has completed some of the challenge tasks; the student included documen-
tation describing the challenge tasks that were completed and how; all submission instructions
were followed correctly.

Code Elegance. All of the base tasks and some of the challenge tasks are implemented in such
a way that code can be reused, where possible; the majority of the code is written in such a way
that is easy to maintain, i.e., add new or extend features; the code is efficient without sacrificing
readability and understanding.

Documentation. The documentation consists of comments that are useful in understanding the
code and/or structure of the program; each file has header information (e.g., student name and id).

Readability. The code is clean, understandable and organised; the student used meaningful
identifier names, i.e., good function and variables names: the student used white space between
logical code blocks.

B.3 Grade B (60–69)
Program Correctness. The application works as described in the assignment; all the base tasks are

completed, however, no challenge task was at-tempted: all submission instructions were followed
correctly.

Code Elegance. The application is implemented in such a way that only a few code segments
could be rewritten to increase code re usability; the code is fairly efficient without sacrificing
readability and understanding; the student made a poor design choice in a single area.

Documentation. The documentation consists of comments that are somewhat useful in under-
standing the code; some of the comments state the obvious.

Readability. The application has minor issues such as inconsistent indentation.

B.4 Grade C (50–59)
Program Correctness. Minor details of a task(s) are violated; the application functions correctly

on the majority inputs/actions.

Code Elegance. The application is implemented in such a way that many code segments (or
functions) could be rewritten to increase code re-usability: some of the code is unnecessarily
complex or poorly designed.

Documentation. The documentation is simply comments embedded in the code but does not help
the reader understand the code.

Readability. The application has one or two issues that makes the program difficult to understand
such as poorly named identifiers and disorganised code.

B.5 Grade D (40–49)
Program Correctness. Some tasks are incomplete; the application functions incorrectly on some

inputs/ actions.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:33

Code Elegance. The application is unnecessarily complex and/or uses brute force; the application
contains many instances where the code could have been written in an easier, faster or better
fashion.

Documentation. One or more code segments could benefit from comments or the code is overly
commented.

Readability. The application has more than two issues that makes the program difficult to under-
stand.

B.6 Grade F (0–39)
Program Correctness. Significant details of a task are violated, or the program often exhibits

incorrect behaviour; the applications does not open or run in RueJ; Java files are missing

Code Elegance. The application is not organised for re-usability, e.g., all the code is in a single
class (or function); no effort is made to create reusable code; the application is excessively long and
poorly organised.

Documentation. The application has no comments, not even the header with the student’s name
or id.

Readability. The code is readable only by someone who knows what it is supposed do; the
application has several issues that makes the program difficult to understand.

C Grades Per Assignment
This section shows all our results for the minimum, maximum and mean grade per group and per
skill:

—Figure C1 shows the minimum, maximum and mean grades for each of the seven groups when
grading correctness.

—The mean, maximum, and minimum grades for each of the seven groups when grading code
elegance are displayed in Figure C2.

—Figure C3 shows the minimum, maximum and mean grades for each of the seven groups when
grading readability.

—The mean, maximum, and minimum grades for each of the seven groups when grading
documentation are displayed in Figure C4.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:34 M. Messer et al.

Fig. C1. These figures show the minimum, maximum andmean correctness grade awarded by the participants
for each assignment.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:35

Fig. C2. These figures show the minimum, maximum and mean code elegance grade awarded by the partici-
pants for each assignment.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

49:36 M. Messer et al.

Fig. C3. These figures show the minimum, maximum and mean readability grade awarded by the participants
for each assignment.

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

How Consistent Are Humans When Grading Programming Assignments? 49:37

Fig. C4. These figures show the minimum, maximum and mean documentation grade awarded by the
participants for each assignment.

Received 29 August 2024; revised 23 July 2025; accepted 31 July 2025

ACM Transactions on Computing Education, Vol. 25, No. 4, Article 49. Publication date: September 2025.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Consistency in Grading
	2.2 Rubric Design
	2.3 Teaching Assistants and Assessment
	2.4 Educational Datasets

	3 Research Context
	3.1 The Menagerie Dataset
	3.2 Assessment
	3.3 Rubric

	4 Methodology
	4.1 Group Consistency (RQ1)
	4.2 Individual Consistency (RQ2)
	4.3 Pilot Study
	4.4 Participant Selection
	4.5 Position Statement

	5 Results
	5.1 Participant Demographics
	5.2 Grade Overview
	5.3 Grading Consistency of Multiple Graders (RQ1)
	5.4 Grading Consistency of Individual Graders (RQ2)

	6 Discussion
	6.1 How Consistently Does a Group of Graders Apply a Rubric? (RQ1)
	6.2 Are Individual Graders Consistent at Applying a Rubric? (RQ2)
	6.3 Implications for Human Grading
	6.4 Implications for Automated Grading

	7 Threats to Validity
	7.1 Internal
	7.2 External

	8 Conclusion
	8.1 Future Work

	 Data Availability
	References
	 Appendices
	A Further Details on the Menagerie Dataset
	A.1 Data Processing
	A.2 An In-Depth Example Submission
	B Rubric
	B.1 Grade A+0x02013A++ (800x02013100)
	 Program Correctness.
	 Code Elegance.
	 Documentation.
	 Readability.

	B.2 Grade A (700x0201379)
	 Program Correctness.
	 Code Elegance.
	 Documentation.
	 Readability.

	B.3 Grade B (600x0201369)
	 Program Correctness.
	 Code Elegance.
	 Documentation.
	 Readability.

	B.4 Grade C (500x0201359)
	 Program Correctness.
	 Code Elegance.
	 Documentation.
	 Readability.

	B.5 Grade D (400x0201349)
	 Program Correctness.
	 Code Elegance.
	 Documentation.
	 Readability.

	B.6 Grade F (00x0201339)
	 Program Correctness.
	 Code Elegance.
	 Documentation.
	 Readability.

	C Grades Per Assignment

