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Abstract

Writing correct code is an important part of learning to program, but
other attributes such as readability also matter for good code, and
thus it is desirable to assess them while teaching programming. In
this paper we contrast two ways of grading readability: traditional
grading (taken from datasets in three different previous studies), and
the use of Comparative Judgement (in a new study with 20 graders
on 80 projects). We find that both grading approaches are very
unreliable, calling into question whether readability of program
code can feasibly be graded at all.
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1 Introduction

Assessment is an important part of formal education. What teach-
ers assess can determine what students learn, known as “wash-
back” [52], and constructive alignment proposes to deliberately
design assessment to align with learning objectives [3]. If we want
to teach something, it is important to be able to assess it.

When teaching students to program, the most obvious criteria is
that the code should be correct: it should do what is required. But
this is not the only criteria by which program code is judged (either
in education or in industry): it is also important that the program
code should be readable to other people, to aid collaboration, code
review and future maintenance [29]. Code readability includes
factors such as meaningful names, clear and consistent styling, and
good logical flow of code [35].

Taken together, this implies that we should grade the readability
of code. Such grading could be done automatically by a computer,
or manually by a human. We will consider each possibility in turn.
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Automated assessment systems in programming have primar-
ily focused on whether the behaviour of the program is correct,
but have ignored other issues such as code quality, readability,
documentation and so on - confirmed by multiple reviews in the
area [34, 37, 51, 54]. Artificial Intelligence (AI) is one possible solu-
tion to this problem. It appears that Al may be very good at giving
formative feedback [36], but there remain questions around using
it for summative aspects (i.e., grades) [18]. There are also issues
to consider of fairness, equity and accountability. For example: is
it acceptable to grade students’ university assignments without a
human in the loop? The European Union have recently passed an
Al act [38], which classifies Al use for grading exams at university
as a high risk activity and therefore subject to stringent regulation.
It therefore seems wise to continue to consider human grading.

Human grading has historically been used to grade readability,
but larger programming projects are time-consuming to grade and
there can be issues with calibration and consistency [32, 35]. So
an alternative approach to traditional manual grading would be
welcome, if it offered improved consistency.

This paper investigates the use of a grading technique known as
Comparative Judgement for grading the readability of university-
level programming assignments; to our knowledge this is the first
time Comparative Judgement has been investigated for use with
program code. Comparative Judgement is like a sorting operation
with humans as the comparison function, using repeated pairwise
“which is better?” comparisons to produce ranks and then grades.

Our research questions are as follows:

e RQ1: Does Comparative Judgement of readability of university
programming assignments show higher internal consistency than
traditional grading?

e RQ2: Do the results of Comparative Judgement of readability
of university programming assignments agree with those from
traditional grading?

We begin by reviewing prior work grading programming as-
signments, especially readability and code quality. We then explain
Comparative Judgement in detail, and describe how we used it on
programming assignments. We report on the results of an experi-
ment where we asked human graders to use Comparative Judge-
ment to grade readability of programming assignment submissions,
and compare this to traditional grading of the same submissions.
We find that there are issues with all methods of grading readability,
and we reflect on the implications for programming education.

2 Prior work on grading program readability

2.1 Code quality in education

Kirk et al. [24] recently published a validated code style manual
for educational assessment of code style. Their definition of style
- “aspects of maintainability, related to the ease of understanding
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and changing code, that can be determined by reading the source
code” — is broader than readability, but their principles are:

o The rationale, intent and meaning of code is explicit.

o Different elements are easy to distinguish and the relationships
between them are apparent.

e Coding constructs are selected to minimise complexity for the
intended reader.

o Elements that are similar in nature are presented and used in a

similar way.

All elements that are introduced are meaningfully used.

Implementation choices are consistent with the problem.

Code duplication is avoided.

Related code is grouped together and dependencies between

groups are minimised.

The same survey fed in to a working group by Izu et al. [16] on a
similar topic. Borstler et al. [5] previously examined code quality
perceptions among students, educators and professionals but found
no common ground between or within these groups on what makes
code readable. Keuning et al. [21] defined code quality as an aspect
that appears after writing the initial program and includes but is
not limited to documentation, layout, and naming — which was
based on the Stegeman et al. [53] rubric and is in line with the Kirk
et al. [23] literature-informed model for code style principles.

2.2 Human grading of program readability

In a mapping study conducted on computing education research
between 1975 and 2022, Keuning et al. [21] found 195 papers that
discussed aspects of code quality education, with how code quality
is assessed being a major theme. They found current research fo-
cuses on quantitative approaches, including tools to identify code
smells and calculate quality metrics automatically — which we will
return to in the next subsection. Only a few papers have investi-
gated human roles in assessment.

Ichinco et al. [14] investigated whether expert-provided code
changes could be adapted to generalisable rules, and Andrade and
Brunet [2] conducted a study to evaluate how students’ peer feed-
back can be used to provide meaningful suggestions to improve
the quality of source code. Keuning et al. [20] examined the for-
mative feedback that teachers give on code quality, but not grad-
ing/summative feedback which interests us in this study.

Perretta et al. [40] recruited 15 graders and found that the average
grade was not always consistent — but this assessed individual
grader bias rather than agreement, since each grader had a totally
separate set of submissions to grade compared to all other graders.

There has also been work on human evaluation of program read-
ability outside of educational assessment that overlaps with our
interest. As part of work to construct a metric for readability, Buse
and Weimer [6] asked 120 students to grade readability of code
on a 1-5 scale and found a moderate to strong association (Pear-
son correlation of 0.56). Sergeyuk et al. [48] asked 390 developers
to evaluate readability and found a very low level of agreement
(Krippendorft’s a = 0.14). Wiese et al. [56] found that 231 students
had varying levels of agreement, from 24% to 90%. Scalabrino et al.
[46] asked 30 students to evaluate readability of code snippets and
achieved a Cronbach’s a = 0.98 (very high agreement). Thus the
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results on human grading of readability show a wide variation in
their reliability, from very strong to very weak.

2.3 Automated grading of program readability

Most published work on grading — or more generally evaluating, in-
cluding formatively — program readability has not used humans, but
rather automated assessment. Historically, this generally involved
static analysis tools like PMD, Checkstyle or similar [4, 15, 19, 44].
More recent work has focused on using large language models
(LLMs) to improve the quality of automated feedback [25] and sup-
port automated assessment [1, 11, 30]. We are not aware of any
work on validating such automated tools against any other measure
of readability, such as human evaluation.

3 Comparative Judgement

In this study we use Comparative Judgement, a novel way to grade
students’ work. Its core operation will be familiar to computer scien-
tists as a sorting algorithm. Comparative Judgement aims to sort a
set of students’ submissions into an order, by repeatedly presenting
two items to a human and asking which is the better item. This is
used to gradually sort the list of student submissions by order of
quality. Standard Comparative Judgement uses all possible compar-
isons (somewhat like a bubble sort), while Adaptive Comparative
Judgement [42] aims to reduce the number of needed comparisons
by avoiding comparisons to which the answer is already likely to
be known, somewhat like a Shell sort [49].

The output of Comparative Judgement is a sorted list, and it
is a common mistake to assume that this means its output can
only be a relative ranking. The relative ranking can be changed
to a set of absolute grades via the insertion of anchor items. The
idea is this: create an example assessment answer (either manually
created, or from a previous year) that is the exact minimum required
to get an A (Anchor-AB) or a B (Anchor-BC). Then you perform
Comparative Judgement on your submissions (S1 to S5) and these
anchors. Imagine that you get the following ranking:

e 5S4 (best)

e S3

e Anchor-AB
e S1

e Anchor-BC
e S5

e S2 (worst)

S4 and S3 are grade A because they ranked above Anchor-AB; S1
is grade B because it was above Anchor-BC but below Anchor-AB;
S5 and S2 are grade C because they fell below Anchor-BC!.

Comparative Judgement has been used to assess domains such
as primary school writing ability [7] and also across a wide va-
riety of primary, secondary and tertiary education domains (see
San Verhavert and Maeyer [45] for a review). To our knowledge
it has never been used on computer program code for grading. A
similar approach was tried by Luxton-Reilly et al. [27]; they asked
students to peer review program code by presenting two side-by-
side solutions to the same problem, with the aim of eliciting better
formative feedback on the code - there was no summative grading.

!The reader may want to know what happens if the anchors appear out of order; this
indicates that the grading is too inconsistent to be reliable.
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4 Domain of interest and dataset

In this paper, we are interested in grading university-level program-
ming projects. For a specific focus we have chosen to investigate
grading Java projects, as that is the language primarily used at
our institution, and it is also the most popular language in use at
universities in general [31, 50]. We are interested in grading larger
programming projects, as we feel this is the most challenging grad-
ing task in terms of time (and thus workload), and complexity.

To be able to compare Comparative Judgement with traditional
grading, we needed a dataset of large Java programming projects.
There are several datasets of smaller programming tasks [8, 41], and
Java datasets without an associated specific task [55], but we could
not find many with larger Java projects. We decided to use our
Menagerie dataset [33, 35], which contains several hundred larger
Java student submissions for a specific assignment, which have
already been graded traditionally on four dimensions (one of which
is readability) by multiple graders. This meant we could collect data
for Comparative Judgement grading of the dataset and then com-
pare Comparative Judgement to traditional grades from the same
set of student submissions in order to answer RQ2. The Menagerie
dataset “consists of a second semester CS1 assignment that ran over
four academic years... the assignment was a small-group, open-
ended paired programming assignment to utilise object-oriented
programming concepts to develop a predator/prey simulator.” [33]

5 Adapting Comparative Judgement to large
programming projects

Comparative Judgement has so far been most frequently used to
evaluate short pieces of work [45]. The main reason is quite prosaic:
for Comparative Judgement to be efficient, the comparisons need to
be fast and done almost at a glance — the items to compare need to fit
side-by-side on a screen together. Few university-level assignments
(our domain of interest) are of the < 30 lines of code length that
would allow two pieces of work to fit on one screen side-by-side.
Therefore to allow Comparative Judgement to be feasibly used on
large programming projects, we need to somehow condense them
into a smaller form for grading. We constructed an algorithm to
pick a representative method from a larger Java project. (Method is
Java’s term for what is also known as a class member function.)
At its core, the algorithm takes the set of all methods in a stu-
dent’s submission and attempts to pick the most suitable method
for comparison. This is done by first conjoining two filter criteria:

Similarity to baseline The programming assignments included
in the Menagerie dataset have a starting project that the
students progressively modify. If this is not accounted for,
it is possible that we pick part of the baseline code to grade
(or a very lightly modified part of the baseline code), which
would be unrepresentative of how students actually code.
So we used an existing similarity metric [43] to filter out
methods which were too similar to the baseline project.

Length The methods needed to fit in one half of a program screen
to allow fast comparison. We narrowed down the methods to
just those of a suitable length by taking all methods above 10
lines (which we posit is a critical minimum for being able to
evaluate code readability), then narrowed down to methods
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between the median and 95th percentile length (of methods
over 10 lines).

We found that a very small number of submissions did not have
any methods at all which satisfied both criteria. On closer inspection
this was because the students had submitted the baseline code
without any modification. In this case it is clearly impossible to
grade the readability of the student’s own code.

In cases where the two criteria are satisfied by exactly one
method, that method is picked. Where there are multiple methods
available to pick from, we pick the method which has the median
cyclomatic complexity. Cyclomatic complexity is a code complex-
ity metric used in software engineering [9]; we pick the median
method as being the one most representative of the complexity of
code that the student has added to the baseline project.

6 Experimental design and method

We conducted an experiment to use Comparative Judgement to
grade the dataset. We selected 80 graded projects from the Menagerie
dataset using a stratified sample to try to get as good a spread of
readability grades as possible from the dataset. Adaptive Compar-
ative Judgement [42] suggests that 10 comparisons per item are
needed for grading [22], meaning 800 comparisons overall; we
chose to require 40 comparisons from each participant, meaning
that 20 participants were needed?. Participants were recruited from
the typical demographic for Teaching Assistants (TAs) at our insti-
tution: 3rd year (or later) undergraduates, Masters students, PhD
students and postdoctoral researchers. This is the same process
used for the graders of the Menagerie dataset (who were the same
demographic, also from King’s College London a few years before).
As with the Menagerie graders we deliberately did not train them
on the specific rubric, as we believe this reflects the typical grader
recruitment process at most institutions, including our own.
Participants were asked to perform the Comparative Judgement
task and then complete a short survey reflecting on their experience,
as well as providing relevant demographics (e.g. their experience
with Java). They were incentivised with the equivalent of 12 EUR for
their participation, which was expected to take around 30 minutes.
Our experiment was approved according to the ethical approval
procedure of King’s College London (ref: MRA-23/24-45348).

6.1 Readability rubric

The readability rubric used in the Menagerie traditional grading
uses a representative description for each letter grade. For example,
the description for the highest (A++) grade is as follows [33]:

The application is exceptionally well-organised and very
easy to understand; the student used indentation appropri-
ately and consistently to delineate code blocks; each function
performs a single well defined operation; the student used
meaningful identifier names, i.e., good function and variables
names; the student used white space between logical code
blocks; the student uses consistent spacing around operators
and variables; classes are self-contained with private data
hidden and methods are public only when necessary.

2For real grading we would anticipate that we would use less participants with more
comparisons each, but we wanted to be able to evaluate inter-grader consistency and
that would be less valid with fewer participants.
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The later descriptions for lower grades are much more concise.
We wanted an equivalent rubric to let us compare Comparative
Judgement to the existing traditional grades which used this rubric,
but we could not provide this rubric as-is to our participants be-
cause they were not assigning grades directly but rather comparing
items. Instead we used the following instruction which captures
the attributes from the original Menagerie rubric:

We will show you two pieces of code at a time, and we
want you to judge which code is more readable. Examples
of good readability are:

o The variables and methods are named meaningfully.

o Consistent styling (e.g. placement of curly braces).

o Clear formatting (e.g. good indentation and appropriate

whitespace between blocks).
e Logical flow of code.

7 Experimental results

20 participants completed the experimental task and ensuing sur-
vey. According to the survey, 11 had graded before and 8 had not (1
did not answer) - but this is not an unusual response for TAs at our
institution, who often only grade for one year. They reported be-
tween 3-22 years of experience with programming, with a median
of 7 years. 8 of them reported being 3rd year bachelor’s students, 10
reported being PhD students, and 2 were postdoctoral researchers.

7.1 Validity checks

We made several checks that participants took the Comparative
Judgement seriously. First, we checked if participants repeatedly
clicked the left or right choice, which would indicate boredom or
disengagement. Using a normal approximation to a binomial distri-
bution, we checked if the percentage of left clicks could come from
a distribution with a mean of 50%. The p-value of 0.480 suggests
that the users were picking left and right with equal probability,
and thus did not show signs of repeatedly clicking the same button.
Second, we checked if participants showed a noticeable change
in speed, which would again indicate boredom or disengagement.
Participants showed a gradual speeding up as they become familiar
and experienced with the task, but there was not an indication of
boredom such as response time dropping to only a few seconds.
In our survey, we asked the participants if they felt they were
consistent in their assessments. 12 answered positively (they felt
they were consistent) and 8 answered negatively. We asked if they
found it easy or hard; 3 reported it was hard, 7 reported it was easy,
and 10 said it was both, depending on the specific comparison.
Finally, we asked participants what they felt was most impor-
tant to their judgement. The responses are shown in Table 1, and
when compared to the rubric in subsection 6.1 we can see a good
alignment. The main difference is that participants mentioned com-
menting which was not part of the rubric (because it was part of
the documentation dimension in the original Menagerie dataset).

7.2 Internal consistency (RQ1)

To measure internal consistency of the Comparative Judgement, we
used Split-Half Reliability with Spearman-Brown correction [22] -
henceforth referred to as SHR. For this measure, 0.7 is considered
acceptable, and beneath 0.6 is considered poor [26, 47].
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Table 1: The criteria that were mentioned by at least a quar-
ter of the participants when asked (in a free-text response)
which criteria they focused on to judge readability during
the Comparative Judgement task, with the amount of people
(out of 20) that mentioned them.

Criteria Participant count
Consistent indentation/whitespace 13
Good explanatory comments 11
Good naming of variables and methods 11
Avoiding large amounts of nested code 9
Avoiding long code (in number of lines) 5
General understandability 5

Table 2: The Split-Half Reliability (SHR) with Spearman-
Brown correction, plus the 95% Confidence Interval (CI) cal-
culated by bootstrapping (500 repetitions). This is defined
directly for Comparative Judgement (top row) and calculated
for the rest by simulating a Comparative Judgement task
using the absolute grades for readability.

Dataset | SHR 95% CI

Our Comparative Judgement | 0.495 (0.316, 0.645)
Messer et al. [35] -0.858  (-2.794, 0.266)
Buse and Weimer [6] 0.443  (0.195, 0.633)
Scalabrino et al. [46] 0.431  (0.186, 0.609)

To enable comparison with traditional grading, we can calculate
this same measure for other datasets using a simulation approach
to simulate a Comparative Judgement task as follows. We take two
items at random (but preferring closer items, as Adaptive Compar-
ative Judgement does) and use the traditional absolute grades to
decide the outcome of that comparison: the higher grade wins the
comparison, tied scores are decided by a coin flip. We do this for 10
comparisons per item, and thus we simulate a Comparative Judge-
ment task based on the absolute grades. We simulate the whole
judgement process 500 times, which gives us a better estimate and
a 95% confidence interval (CI). We did this for several historical
readability grading datasets which had available public data: Messer
et al. [35], Buse and Weimer [6] and Scalabrino et al. [46].

The results are shown in Table 2. Note that 0.45 (around our best
values) is worse than 95% of the Comparative Judgement studies
surveyed by Kinnear et al. [22], all results are easily in the poor
category of SHR < 0.6 and no confidence intervals contain the
acceptable SHR score of 0.7. The negative outcome for Messer et al.
[35] indicates that the data is below chance agreement; note that
their dataset is for readability of an entire project, whereas the
other three are all for snippets of code around 10-50 lines.

7.3 Comparison to traditional grading (RQ2)

Since the snippets in our Comparative Judgement are derived from
Messer et al. [35], we can compare whether our Comparative Judge-
ment rankings are consistent with the traditional marking per-
formed in that study. For our analysis we leave aside the issue of
mapping the traditional grades and Comparative Judgement out-
come to a single scale. If Comparative Judgement is consistent with
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Figure 1: The association between the Comparative Judge-
ment score (Y axis) and the traditional grade (X axis). Red
triangles indicate the project in question had a single method
of 10+ lines added to the project, blue circles indicate there
was more than one such method.

traditional grading, then we would expect to see an ordinal relation-
ship between the two grades even if they are on different scales. In
Figure 1, we provide a plot of traditional grades vs the Comparative
Judgement ranking of all of the 80 student submissions.

This figure is almost a textbook example of no association. We
calculated Kendall’s 7, where +1 indicates perfect agreement, —1
perfect disagreement, and 0 no association: the result was —0.01.

One challenge for investigating these results is that the tradi-
tional grading was performed on a whole project, but the Compara-
tive Judgement was performed on a representative method; perhaps
our system of picking a representative method was flawed and to
blame. However, we can perform an analysis to investigate this.
Some of the projects only had a single 10+ line method in them, over
and above what was carried forward unmodified from the baseline.
In this case, we can be confident the method is representative of
the code readability, because any other code is very short methods
or classes. The colours and shape in Figure 1 provide this infor-
mation. The red triangles show the 14 (out of 80) projects where
there was only a single 10+ line method. Kendall’s 7 for this subset
was 0.17, indicating a mild improvement where there was only one
possible method available, but suggests the representative-method
algorithm was not the main cause of the lack of agreement.

8 Discussion

We discuss the results of each of our research questions in turn, but
first we discuss some limitations.

8.1 Limitations of our methods

The transformation to Comparative Judgement via simulation that
enabled our comparison to historic datasets carries both advan-
tages and disadvantages. One advantage is penalising limited grade
distributions. In the original Scalabrino et al. [46] dataset, over a
third of the snippets were graded 4 on a 5-point scale (where 5 is
best). This makes it easy to achieve a high agreement score among
graders with metrics like Cronbach’s a: if everyone agrees on a
4, the measure produces good agreement. However this is a poor
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discriminant for grading: one use of grading for both educators and
students is to distinguish students’ performance [28] and this is
not possible if almost everyone gets the same grade. Transforming
to Comparative Judgement implicitly penalises the use of similar
grades, because we transform ties into coin flips, so if everyone
has the same coarse grade, the Comparative Judgement ranking
essentially becomes noise and scores poorly on reliability.

The disadvantage of simulation is that it depends on the param-
eters of the simulation, such as the number of comparisons. We
chose 10 per item to be in line with our study and established guide-
lines [22, 42], but a higher value would increase the SHR of our
simulations. Doubling to 20 comparisons would raise reliability to
approximately 0.55 for the last two rows of Table 2, although this
would still be in the poor category.

8.2 Internal consistency (RQ1)

In this study we investigated the use of Comparative Judgement
for grading readability. We found that our participants took the
Comparative Judgement task seriously and did not show signs of
boredom. We used the SHR metric for calculating consistency, and
were able to use simulation to calculate the same metric (thus en-
abling comparison) on three historic datasets. The technical answer
for RQ1 is actually that Comparative Judgement shows consistency
at least as good as traditional grading, but this disguises that they
are all similarly very poor in their consistency.

Consistency is one of the fundamental pre-requisites for grading.
If grading the same submission by different markers or even the
same marker (as in Messer et al. [35]) produces a very different
result then it is unfair to use it to grade students work: the grade
is random noise and is not informative for either the students
themselves or for universities to distinguish student performance.
If no methods can produce a consistent grade for readability then
the idea of grading readability at all would be invalid.

There are two possible ways forward for future work. One is
to try to increase the consistency of readability grading. Perhaps
our rubrics are too minimal and should be made more detailed
— although prior work [17, 39] suggests making the rubric more
detailed does not necessarily increase consistency. Perhaps our
graders need more training on how to grade readability rather than
just being given a rubric. Based on prior findings [12] of inconsistent
grading in their own courses, Hicks and Douglas [13] suggest that
graders need feedback on their feedback to improve, but point out
that training can be tedious, and graders (paid per item graded)
have little incentive to improve their accuracy.

The other way forward is to stop summatively grading program
readability. It is possible that it is too subjective to be able to grade
consistently at all, and instead graders should restrict themselves
to formative grading only: providing notes on limited and specific
places where readability could be improved rather than worrying
about assigning an overall grade for the whole assignment.

Note that this result is completely orthogonal to how we derived
the representative methods for our dataset (see next subsection);
the reliability is about the grading task regardless of where the
code itself came from. This pattern was found across three different
historic datasets and our new study, which gives us high confidence
in our result that grading readability is hard or impossible.
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8.3 Comparison to traditional grading (RQ2)

We found that there was no relation between our Comparative
Judgement of representative methods, and the grading of the full
projects from the same dataset. How can traditional grading and
Comparative Judgement be perfectly unrelated? One possible ex-
planation was that picking a representative method is a flawed
concept — but even when there was only one method to pick from,
agreement was not substantially increased. Another possible ex-
planation relates to the different rubric that was necessitated for
Comparative Judgement compared to traditional grading, but the
differences were relatively slight.

Instead, the most obvious explanation relates to our RQ1 result.
If traditional grading of whole-project readability is close to chance
then it makes sense that another measure such as Comparative
Judgement, whether chance or valid, would not have a reliable
association. So again, the wider implication is that human grading
by any method is too self-inconsistent to be able to ask sensible
questions about consistency between any of the grading methods.

9 Conclusions
The answers to our research questions were:

e RQ1: Comparative Judgement showed poor reliability, but so did
several previous studies that graded readability traditionally.

e RQ2: The results of Comparative Judgement of representative
methods and traditional grading of the whole project are com-
pletely unrelated, although this is likely because of the RQ1 result.

Although we have answered our research questions, there is
clearly a broader issue. Multiple datasets from different studies all
seem to show poor consistency results for grading readability. There
are potential limitations: we are assessing consistency through
simulation in some cases, and the datasets are assessing different
levels of granularity. But it suggests there might be a fundamental
problem with the basic idea of grading readability of program code.
It may simply be too subjective to be reliably graded by humans.

There has been work in the past to try to build models of read-
ability, for example by Buse and Weimer [6] and Scalabrino et al.
[46]. They use the human evaluation as the source material, so such
models are again dependent on human grading of code readability.
These models are built by grading code on a five point scale, which
is already coarse (and the data is often skewed/condensed) followed
by dividing code into readable/non-readable which is a very coarse
categorisation that can inflate model performance. Fakhoury et al.
[10] cast doubt on the value of such models. Sergeyuk et al. [48]
found that such models did not match with human evaluation of
readability, and - as in this study — found that humans did not re-
ally agree with each other on readability evaluations. Borstler et al.
[5] found the same result about lack of agreement among humans
about readability. So the readability evaluation literature, coupled
with the results of this paper, seem to point in the same direction:
it is not possible to get a collective understanding of readability of
program code, nor reliable human agreement when grading it.

An obvious alternative is to turn to automated grading. Systems
such as static checkers are deterministic, so they are completely
consistent in their grading; problem solved? Surely: problem elided.
If no humans can agree on what makes readable code, adding an
automated rule means either the humans should have been using

Neil C. C. Brown, Marcus Messer, and Jennifer lkin

this rule, or there are non-automatable dimensions that humans
believe should be used in grading readability. Of course, humans
could manually perform the equivalent to automated grading if
given a very strict rubric, but the fact that they are inconsistent
when given a looser rubric suggests that such a strict rubric might
again be avoiding the problem rather than solving it.

An alternative possibility is that humans need better training
on how to evaluate readability. The datasets included in this study
provided a rubric to evaluators, but no training or certification that
graders could evaluate readability accurately according to the rubric.
This would again require an establishment of a reliable ground truth
for readability of code. Overall, grading readability of program code
seems too inconsistent to be useable in education, and much existing
work [5, 10, 48] suggests that it is unlikely to be possible to find
common ground on readability. Therefore our recommendation is
to stop summatively grading program readability unless further
research can solve these problems and find anagreed-upon model
of readability that can be consistently graded against.

In the spirit of open science, all of our materials, study data,
simulation code and analysis code are available in an OSF repository:
https://osf.io/cyudn/
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