
Usage of the Java Language by Novices over Time:
Implications for Tool and Language Design

Pierre Weill-Tessier
pierre.weill-tessier@kcl.ac.uk

King’s College London
London, United Kingdom

Alexandra Lucia Costache
alexandra-lucia.costache@kcl.ac.uk

King’s College London
London, United Kingdom

Neil C. C. Brown
neil.c.c.brown@kcl.ac.uk
King’s College London

London, United Kingdom

ABSTRACT
Java is a popular programming language for teaching at univer-
sity level. BlueJ is a popular tool for teaching Java to beginners.
We provide several analyses of Java use in BlueJ to answer three
questions: what use is made of different parts of Java by beginners
when learning to program; how has this pattern of use changed
between 2013 and 2019 in a longstanding language such as Java;
and to what extent do beginners follow the specific style that BlueJ
is designed to guide them into? These analyses allow us to see what
features are important in object-oriented introductory program-
ming languages, which could inform language and tool designers
– and see to what extent the design of these programming tools
can have an effect on the way the language is used. We find that
many beginners disobey the guidelines that BlueJ promotes, and
that patterns of Java use are generally stable over time – but we
do see decreased exception use and a change in target application
domains away from GUI programming towards text processing.
We conclude that programming languages for novices could have
fewer built-in types but should retain rich libraries.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
BlueJ; Blackbox; Java
ACM Reference Format:
Pierre Weill-Tessier, Alexandra Lucia Costache, and Neil C. C. Brown. 2021.
Usage of the Java Language by Novices over Time: Implications for Tool and
Language Design. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education (SIGCSE ’21), March 13–20, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.
3432408

1 INTRODUCTION
BlueJ is an educational programming tool designed to help be-
ginners learn the core concepts of Object-Oriented Programming
(OOP) [19]. BlueJ was first released in 1999, and in the 20+ years
since it has grown to be used by over 2 million users a year. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432408

Blackbox data collection system [9] is built-in to BlueJ and allows
analysis of data from all opted-in users. BlueJ has an opinionated
design: the design of the software itself and the supporting materi-
als (particularly the popular “Objects First” textbook [4]) promote
a specific style of Java. For example, all fields should be private
and use accessors and mutators; classes should be capitalised while
fields and methods are not; all classes and methods should have a
header comment.

We have three research questions (RQs) about programming
style, given here with a justification of their importance:

• RQ1: how much use is made of various parts of the Java
language by programming novices? This can inform discus-
sions on language levels and language design. For example, Racket
contains explicitly enforced language levels [14] to remove more
advanced concepts from the language itself for beginners. If we
were to do the same for Java, what should be in the lower levels?
Or, if we were to create a new language for novices, which con-
cepts are important to include and what could potentially be left
out?

• RQ2: howeffective is passively promoting a particular code
style in a tool? If everyone using BlueJ follows the intended
style, the promotion would seem to be effective, but if few people
follow the style, it is clear that this promotion was not effective.
This will provide useful lessons for designers of other tools who
may want to promote a teaching style.

• RQ3: do these issues of coding style and language usage
change over time? Computing is often thought of as a field of
dynamic change, but do our teaching practices settle into a stable
pattern, or do they continue to change even for amature language
(Java is now twenty-five years old)? This will have implications
for tool designers, textbook authors and course designers, as to
whether and how they should update their tools/books/courses.
We have two data sets, one from 2013 and one from 2019, which
will let us examine possible changes over time.

This paper’s contribution is threefold. First, we provide a survey
of language use and style in Java “in the wild”: data logged from
home and classroom use worldwide. We provide this data for 2013
and 2019, to show possible changes over time. Second, we analyse
whether BlueJ’s coding style guidelines are concretely followed,
and subsequently reflect on whether promoting particular code
styles can be effective in a programming tool and its surrounding
ecosystem. Third, our analysis provides an exemplar analysis using
the new “Blackbox Mini” data subset and representation, and we
comment on the advantages of this data representation for program
analysis.

https://doi.org/10.1145/3408877.3432408
https://doi.org/10.1145/3408877.3432408
https://doi.org/10.1145/3408877.3432408

1.1 Related work
There has been much previous work on other aspects of program-
ming novice behaviour in Java, for example compilation behaviour
[17], compiler error messages [5], debugging [1, 6], or period of
activity [10]. Errors have been a particular topic of interest, ei-
ther compiler errors or the more general topic of programming
errors [16, 24]. Our interest in this paper is not in errors, but rather
in use of different programming features, as well as coding styles.

There has been some previous work to look at the coding style of
novices. Shneiderman [22] used multiple choice questions and fill-
in-the-blank tests to evaluate Fortran programmers’ behaviour, but
in an artificial setting rather than actual programming. There have
been experiments on how style affects comprehension [25], but
these used specific examples rather than examining what students
wrote themselves. There has been a large recent body of work
looking at coding style and code smells in block-based languages [2,
15, 20, 23]. A previous study applied a static analyser to some of the
Blackbox dataset [18], but this looked at semantic issues with coding
style (e.g. missing default in switch statements) rather than themore
human-oriented aspects (e.g. class naming) that we look at in this
paper. Another study [13] used a similar approach for the Processing
language. De Ruvo et al. [12] looked at Java coding style issues in
submitted solutions to a small set of specific assignments. Bafatakis
et al. [3] used StackOverflow as a dataset to look at style issues in
Python code, although this was among experienced programmers
rather than novices.

There has been previous work to examine the effect of active
interventions where tools provide style guidance [21] based on the
code the student wrote; in this study we instead examine the effect
of a passive intervention of altering programming tool design (e.g.
templates) and materials (e.g. textbooks) to encourage a particular
coding style in all programs.

We are not aware of any studies looking at language use over a
long time period as in this study.

2 BLUEJ AND BLACKBOX
BlueJ is a Java IDE primarily designed for novice programmers [19].
The design of BlueJ focuses on conveying object-oriented concepts
to the users. For example, via a representation of the class in the
IDE, it is possible to interactively instantiate a class and call its
methods via a contextual menu [19]. Thus BlueJ’s design is based
around an introduction to OOP from a direct practical interaction
with objects first. In contrast, other programming approaches tend
to focus on syntax first, and often leave objects until later courses
because they are viewed as an advanced topic.

Several aspects of BlueJ’s design specifically aim to influence
programming style:
• All new classes in BlueJ are generated from a fixed template
which has a Javadoc comment for the class and method. This
encourages users to retain such comments, and aims to start a
habit of always providing such a comment.

• The template always has access specifiers (public, private, etc)
on classes, fields and methods. In Java it is usually possible in
single-package programs to omit all such specifiers (the default
being package-wide visibility) and still have a program compile,
but this template hints that the access specifiers should be given.

• There is no need for a main method (the infamous public static
void main(String[] args)) in BlueJ. Code can be executed by
constructing an object or invoking a method in the GUI. Not
only does this mean that students can avoid the complicated
main method syntax at first, but it also moves away from the
command-line style of programming that the main method (with
its command-line arguments) implies.

BlueJ’s ecosystem also comprises several resources for educa-
tors in accordance with the aforementioned principles. The BlueJ
textbook [4] is co-written by BlueJ’s creator and proposes a peda-
gogical approach of OOP by providing code project examples and
exploring the functionalities of BlueJ. The book’s authors present
OOP through projects and software engineering concepts (e.g. de-
signing classes, handling errors) rather than simply referencing
Java language constructs, and they provide a specific code style
that is adhered to throughout the book and explicitly given in the
appendix. The Blueroom is an official BlueJ teacher’s community
website where members can share teaching resources; the most
popular resources are those written by BlueJ’s creators, which again
espouse the same coding style.

2.1 Blackbox
From BlueJ 3.1.0, users can opt-in to take part in an anonymised
data collection project named Blackbox [9]. The data is sent from
the users’ machines to a central server where it is stored in an SQL
database. Blackbox is available to other researchers and has been
used for several studies [5]. We presented a summary of its usages
up until 2018 in a retrospective paper [7].

Inspired by feedback from researchers that the data schema is
unwieldy, we introduced Blackbox Mini at SIGCSE 2020 [8]. Black-
box Mini contains a subset of the Blackbox data-set. The source
files are stored in srcML [11], an XML-based markup language
created by Collard and Maletic to represent the source code of sev-
eral programming languages. Blackbox Mini data can be analysed
using any XML processing techniques, for example using XPath
queries. Blackbox Mini now comprises two slices: one that cov-
ers the first million events of the BlackBox data-set (in 2013), and
another covering a million events of 2019.

3 ANALYSES AND RESULTS
To answer our research questions, we performed multiple differ-
ent code analyses. Our RQ1, concerning the use of different Java
language features, is investigated by looking at:
• use of different Java data types in the source code, and
• use of different Java keywords and constructs in the source code.
Our RQ2, concerning promotion of the BlueJ preferred Java coding
style, is investigated by looking at:
• use of Javadoc comments,
• adherence to naming conventions (class names should start with
a capitalised letter, method and variable names should not),

• the use of the standard public static void main (String[] args)
method in the project (not needed in BlueJ),

Our RQ3, concerning change over time, is investigated by perform-
ing all of the analyses on both the 2013 and 2019 data set, and then
comparing the results.

countJavadocFiles = 0
for filename in filenames:

countJavadoc = 0
root = ET.parse(os.path.join(dirpath, filename)).getroot()
for inner in reversed(root.findall('.//unit')):
if inner.get("compile−success") == "true":
for innerJavadoc in inner.findall('.//comment'):
if not (innerJavadoc.text is None):
if innerJavadoc.get('format') == 'javadoc':

countJavadoc += 1
break

if countJavadoc != 0:
countJavadocFiles += 1

if countJavadocFiles != 0:
print "This␣project␣has␣javadoc."

else:
print "This␣project␣does␣not␣have␣javadoc."

Figure 1: Example snippet of analysis using Python and
XPath on srcML files to determine whether any files contain
Javadoc comments. As this example shows, such analyses
only require a few lines of code and simple XPath queries
(for example, “.//comment” finds all comments in the source
within the current node).

3.1 Data and Method
The data used is the Blackbox Mini subset of the Blackbox database.
There are two data sets: one from the start of Blackbox in 2013,
and a matched data set in 2019. The 2013 data set covers the first
million events of Blackbox, from June 2013, and has 10,657 projects
containing 24,217 files, belonging to 10,455 users. The 2019 data set
is matched on the time of year and number of projects, and only
contains projects from new users. It has 10,657 projects containing
31,285 files from 10,576 users. Each Blackbox project belongs to
exactly one user, so the number of projects-per-user is 1.02 and 1.01
for the two data sets. Since this ratio is so close to 1, we report only
proportion of projects here, but this can also be understood as the
proportion of users.

The following results have been retrieved using XPath expres-
sions and Python to process the srcML files in the BlackBox Mini
data set. To give an idea of the kind of analysis that is used with the
srcML format, the source code of an example analysis is given in
Figure 1. The analyses examine only the last successfully compiled
version of each source file. If no such version is found, the project
would have beeen dropped from the statistics; however, all files
have at least one successful compilation in both the 2013 or 2019
data sets.

3.2 Javadoc Comments
BlueJ’s guidelines [19] give prominence to the use of comments
in code. If a user creates a new class in BlueJ, the default template
contains a Javadoc1 comment for the class and the method. The
1Javadoc is a specific comment format beginning /** that indicates a documentation
comment.

only way to have a class without these is to later remove them, or
import an existing source file without them into a BlueJ project.

Our analysis found that 48.6% (5,179) of 2013 projects did not
have Javadoc, and neither did 46.1% (4,918) of 2019 projects. This
indicates a stable pattern over time of half the projects lacking
Javadoc. In light of the aforementioned templating, this means
users are actively removing the Javadoc and not putting it back. We
do see instances in the data of users deleting the entire templated
content and typing in a new class from scratch, which indicates that
templates in programming IDEs are actively “resisted” by users, and
may not be very effective – and that users are relatively unswayed
by widespread Java guidelines telling them to provide such com-
ments. In case the issue was that users were using comments with-
out the Javadoc syntax, a brief follow-up analysis looking for class
header non-Javadoc comments was performed, but did not show
any difference to this result.

3.3 Main method
When running Java from the command line, it is necessary to have
a main method with the signature public static void main(String
[] args). This was often held up as an example of unnecessary
verbosity and confusion for Java beginners. BlueJ does not require
this method because any method can be directly invoked, and it is
only introduced later in the Objects First textbook [19]. However,
students using other material may be told to include it, and if the
students want to export the program to run outside BlueJ, it would
also be necessary.

We found that in 2013, 53.7% (5,721) of projects had a class with
a main method, and in 2019 the figure was 28.8% (3,065). This
suggests that users may now be relying less on teaching materials
that require adding a main method.

3.4 Wrong naming conventions
The Java naming convention, which is mirrored in the Objects First
textbook and all BlueJ examples, is that class names should start
with a capital letter, while fields and methods should not.

For the 2013 data set, 10.5% (1,115) of all projects did not have
proper class names; in 2019 this was 24.2% (2,583). For the method
names, in 2013 there were 2.6% (276) of all projects without proper
method names and in 2019 it was 5.4% (574). For field names, in 2013
there were 26.1% (2,783) of all projects without proper field names,
and in 2019 this was 12.4% (1,324). So although the misnaming of
classes andmethods doubled, the number of misnamed fields halved.
One way to look at this is rather than a trend towards incorrect
capitalisation for each, instead it is a trend in the classes and fields
to always use lower-case names (which are considered wrong for
Java classes, but correct for Java fields). This may come from other
programming languages where lower-case is common (e.g. Python)
or perhaps a trend in keyboard typing to not use capital letters.

3.5 Data type usage
Java variables (including local variables, fields, parameters, etc)
must always be declared with a specific type2. We can look at

2Since Java 11 – supported in BlueJ since 2019 – this is not technically true. The new
var keyword allows local type inference. We only found 11 projects that used it in 2019,
which is not large enough to affect our results, so we will ignore it in this analysis.

Data Type 2013 Projects 2019 Projects
int 5,881 (55.2%) 7,011 (65.8%)
String 4,622 (43.4%) 4,650 (43.6%)
double 2,532 (23.8%) 2,222 (20.9%)
boolean 1,484 (13.9%) 1,560 (14.6%)
float 813 (07.6%) 293 (02.7%)
char 336 (03.2%) 672 (06.3%)
long 229 (02.1%) 274 (02.6%)
byte 43 (00.4%) 60 (00.6%)
short 30 (00.3%) 62 (00.6%)

Table 1: Frequency of all primitive data types and String,
in descending order of their combined total. Each count is
the number of projects that contain at least one variable de-
clared with that type.

the types used for variable declarations to get an impression of
which types are used by programmers. Note that because we look
at declarations, this code will not count as having an int:

System.out.println(7);

because there are no int variables, but this one will:

int x = 7;
System.out.println(x);

Although the behaviour of the code is equivalent, they are differ-
ent from a student’s perspective, because they have had to explicitly
think about the type and declare the variable in the second case. So
we feel it is justified to count the second case as using an int but not
the first. We count the number of projects using the type rather than
the instances of the type, because otherwise a project with many
uses of a particular type could bias the statistics. As mentioned
earlier, the number of projects using the type is also an effective
proxy for the number of users using a type. The frequencies for
primitive types and String3 are shown in Table 1.

To give a comparison, the other most frequent data type names in
2013 were Graphics (1,782 projects), ArrayList (1,684) Color (1,664)
and JFrame (1,660); in 2019 they were Scanner (1,700 projects),
ArrayList (653), Graphics (535) and JFrame (501). This list has a
long tail, with 2,409 different data type names in 2013 and 3,101
in 2019. Many refer to types declared within the current project
and thus have frequency one. Primitive types (excluding String)
accounted for 50.2% of all variables in 2013, and 51.9% in 2019.

The number of projects that contained a variable declared with
a standard collection class (which are supplied in the Java standard
libraries) type were as follows: List (265 projects in 2013, 353 in
2019), ArrayList (1,684 in 2013, 654 in 2019), Map (56 in 2013, 108
in 2019) and HashMap (172 in 2013, 206 in 2019). This suggests
that users usually use the concrete type (ArrayList, HashMap) for
a variable’s type, rather than the canonical interface (List, Map).
Iterator was used in 209 projects in 2013 and 192 in 2019.

We also looked specifically at type use in catch statements, which
changed between 2013 and 2019. In 2013 the most frequently used
types in catch blocks in projects were IOException (1504 projects),

3String is not a primitive type in Java, but it is so commonly used that we feel it
deserves treating like one here.

Construct 2013 Projects 2019 Projects
if 4,782 (44.9%) 4,090 (38.4%)
for-loop 2,797 (26.2%) 3,354 (31.5%)
while loop 2,500 (23.5%) 1,606 (15.1%)
try 2007 (18.8%) 902 (08.5%)
throw statement 894 (08.4%) 250 (02.3%)
throws declaration 352 (03.3%) 546 (05.1%)
switch 305 (02.8%) 564 (05.3%)
do-while loop 237 (02.2%) 406 (03.8%)

Table 2: Frequency of selected program constructs, in de-
scending order of their combined total. Each count is the
number of projects that contain at least one of that construct.
Note that the for-loop entry includes both types of Java for-
loop: C-style and for-each.

Exception (1326 projects), InterruptedException (500), NumberFor-
matException (79). In 2019 the most frequent were Exception (464
projects), IOException (310), InterruptedException (26), NullPoint-
erException (25). We discuss this later in the paper.

These results can provide some insight into the changes in GUI
programming over time; in 2013, Java’s primary toolkit was Swing,
while in 2019 in theory JavaFX is the best option (in this time, BlueJ
switched from Swing to JavaFX). Looking at the window classes
as a guide, Swing’s window class JFrame went from being used
in 1,660 projects in 2013 to 501 projects in 2019, while JavaFX’s
window class Stage went from 0 in 2013 to 118 projects in 2019.
This suggests that JavaFX in general has not yet caught on, and
also hints that GUI programming may have declined as a use case
in BlueJ in that time. For comparison, Scanner (a class commonly
used for text parsing) went from 704 in 2013 to 1,700 in 2019.

3.6 Java constructs and modifiers
To get an overview of the use of different aspects of the Java lan-
guage, we looked at the use of Java keywords in particular program
constructs (e.g. while-loops) and modifiers (e.g. static, or private).

A ranking of different program constructs is provided in Table 2.
From 2013 to 2019 we see a shift away from while loops towards
for-loops and do-while loops. The switch (multiway comparison
statement, often called select or case in other languages) statement
also sees an increase, but remains infrequently used.

We also see a halving of the use of the try statements. We have
also included some relevant further statistics: the use of the throw
statement (which throws an exception) has decreased markedly, but
the use of the throws declaration (which indicates that a method
may throw an uncaught exception) has increased. This suggests a
decreased use of exceptions, and a decrease in catching the excep-
tions that do occur.

Several Java keywords are very infrequently used by beginners:
strictfp, native, transient, assert, volatile all have under 20 projects
using them in each year, and synchronized is similarly rare.

Many specifiers in Java (e.g. private) can be applied to multiple
different constructs (e.g. classes, variables), so we separate these
out: we provide counts of use for class specifiers, method specifiers
and variable specifiers in Table 3. We note some patterns here.

Classes Methods Variables
Specifier 2013 Projects 2019 Projects 2013 Projects 2019 Projects 2013 Projects 2019 Projects
public 9,548 (89.6%) 8,339 (78.2%) 9,766 (91.6%) 8,650 (81.2%) 1,641 (15.4%) 597 (05.6%)
protected 3 (00.0%) 0 (00.0%) 95 (00.9%) 132 (01.2%) 124 (01.2%) 132 (01.2%)
private 235 (02.2%) 323 (03.0%) 1,392 (13.1%) 1,065 (10.0%) 4,675 (43.9%) 4,480 (42.0%)
static 716 (06.7%) 84 (00.8%) 8,001 (75.1%) 5,299 (49.7%) 2,661 (25.0%) 949 (09.0%)

Table 3: Frequency of specifiers for classes, methods and variables. Each count is the number of projects that contain at least
one of that specifier applied to a class, method or variable respectively.

The amount of static methods decreased from 75.1% to 49.7%
between 2013 and 2019. It should be remembered that in 2013, 53.7%
of projects had a class with a static main method, and in 2019 the
figure was 28.8%. So most of this drop in static methods is accounted
for by the reduction in main methods. The drop in static classes
and fields may be driven by this, too – if a user’s primary code is in
a static main method, they are likely to make their variables static
to be able to access them, but this is not necessary if their code is
in an instance method.

Protected is very rarely used; public is the most common spec-
ifier. In BlueJ most projects are a single package, so public is not
necessary (you can omit the specifier to get package-wide access in
Java) on classes for the code to compile. Therefore users are retain-
ing the public from the class template or re-entering it. This is in
contrast to the earlier Javadoc finding where users were removing
things provided by the template. The use of public fields (generally
considered bad practice, and never used in the BlueJ coding style)
declined noticeably between 2013 and 2019, from 1,641 down to
597. Many of these public fields are likely to be static constants.

3.7 Lambda Expressions
We briefly examined the use of lambda expressions. Lambda ex-
pressions were introduced in 2013, so they were only present in
the 2019 data set. Only 0.27% of projects from the 2019 data set had
lambda expressions, suggesting they are rarely used by beginners.

4 DISCUSSION
In this section we relate our results back to our research questions.

4.1 RQ1: how much use do novices make of
various parts of the Java language?

It is unsurprising that some obscure keywords (e.g. native meth-
ods) are unused by beginners, as they are intended for expert use.
But there are other intermediate concepts that go almost unused,
including synchronized access and the new lambda expressions.
We would expect the use of lambda expressions may still grow in
future, but six years after their release, only 0.3% of projects are
using them, suggesting that most Java novices and educators view
lambdas as too advanced for beginners. Functional programming
educators will no doubt disagree.

The post-condition do-while loop is less popular than the pre-
condition while loop, but the gap is narrowing. If-statements are
the most popular construct, but interestingly only around 41.6%
of projects feature them. We had expected this number to have
been much higher; this perhaps indicates that selection is not as
important for initial programming as we had expected.

The most commonly used data types for variables are int and
String, followed by double and boolean. There is a fairly convincing
argument for dropping most of the rest of Java’s built-in types
for novices. The other integral types (byte, short, long) are rarely
used, and float has declined in usage. Obviously this is not feasible
for the existing Java language, but designers of new languages
for beginners would be justified in offering one integral type, one
floating point type, a boolean and a string type.

Container classes were popular, but users preferred to declare
variables with the concrete type (ArrayList, HashMap) rather than
the abstract canonical interface (List, Map) as some educators rec-
ommend, perhaps due to a lack of understanding of the principles
of inheritance. Usage of iterators was constant between 2013 and
2019, suggesting that the slowmove from iterators to for-each loops
started by Java 5 in 2004 has now completed.

4.2 RQ2: how effective is passively promoting a
particular code style in a tool?

BlueJ contains various measures, especially its class templates, to
promote good practice, and this is consistent across supporting
materials. This seems to not be fully effective in imposing a code
style. From a user’s perspective, this is fine: BlueJ promotes one
style but will accept all valid Java. From a designer’s perspective, it
is disappointing that such passive measures do not seem to have a
strong impact. Despite BlueJ not needing a main method, over half
of the users in 2013 still supplied one – although this decreased to
just over a quarter in 2019. This strong shift seems surprising when
BlueJ and Java were both already over ten years old.

Educators will probably be unsurprised that students do not com-
ment well, but our data shows that even when given the comments,
students will remove them rather than leave them in the source
code. The treatment of access permissions was much more in line
with commonly accepted code practice: private fields were more
commonly used than public fields, and this improved over time.

The amount of users following Java naming conventions has
decreased over time. Our interpretation of this result is not so much
a trend towards incorrect style, but rather a trend toward a lower-
case style, that may be borrowed from other languages or from a
proposed wider tendency to use less capitalisation.

4.3 RQ3: do these issues of coding style and
language usage change over time?

Many patterns of usage were stable over time, varying only a few
percent between 2013 and 2019, which suggests that such a compar-
ison is reasonable on this size of data set. For example, Strings were
used in 43.4% of projects in 2013 and 43.6% in 2019; if-statements

were used in 44.9% of 2013 projects and 38.4% of 2019 projects. We
have no particular reason to expect changes in such fundamental
aspects of the language. This gives us a basis to examine some of
the other changes, such as the change in main method mentioned
in the previous section.

Usage of built-in data types was generally stable over time, but
the use of other types varied more widely. We detected a possible
change in programming tasks, with GUI classes declining in BlueJ
between 2013 and 2019, while text-parsing classes (e.g. Scanner)
increased during the same time. It may be that educators have
moved GUI programming from the first course (where BlueJ is most
often used) to later courses (where they may move on from BlueJ to
another Java IDE, like IntelliJ) and hence what looks like a decline
in use is actually a postponement in use. Another hypothesis is that
GUIs are increasingly being covered in Web development courses.

The use of the for loop increased, and the use of the while loop
decreased.We hypothesise that the introduction and the subsequent
teaching of “for each” style loops in Java 5 contributed to this
phenomenon, rather than our initial hypothesis of a longstanding
movement away from Iterator (the latter has equally been observed
between 2013 and 2019).

A noticeable shift was found in exception behaviour. The use of
try-catch and throw roughly halved between 2013 and 2019, while
the use of throws (indicating a method may propagate the given
exception) increased. This suggests users are writing less exception-
handling code, in favour of propagating them out to other methods
and/or not catching them at all. The use of IOException in catch
blocks reduced by around 80% from 2013 to 2019; this may partly
relate to an increase of use in the Scanner class, in which the reading
methods do not throw any IOException.

There was also a big reduction in the use of static methods and
fields from 2013 and 2019. We believe this was primarily driven by
the reduction in use of the static main method, but it may also be a
sign that instructors who previously used static as a way to “escape”
the strongly object-oriented nature of Java have either moved to
true object-orientation, or moved on from Java (e.g. to Python).

5 LIMITATIONS
There are potential confounds with the 2013 data set. This data
set was collected at the launch of Blackbox. Users would appear
in Blackbox for the first time after they started using BlueJ 3.1.0.
However, there is no way to distinguish between first-time users
and pre-existing users who upgraded. Therefore it is possible that
users in the 2013 data set hadmore experience than users in the 2019
data set, although neither are guaranteed to be novices. (Much as
students who come to a college introductory programming class are
not guaranteed to be novices, there is no guarantee that someone
loading BlueJ for the first time is or is not a novice.) This also means
that their projects may have been worked on before upgrading,
although the data shows that the 2013 cohort have less files per
project on average, suggesting that this may not be an issue.

A standard caveat of Blackbox research is that Blackbox, and
therefore Blackbox Mini, does not contain user-profile information.
We are thus unable to know the background of BlueJ users, such
as their experience with other programming languages, or their
current programming task. However, for the analyses in this paper,

this is not a particular limitation as we were interesting in program-
ming use “in the wild” in BlueJ without regard to institution or
course or a specific programming task.

The analyses here all look at syntactic information, rather than
a full semantic analysis of programs. For example, our analysis of
data type use looks at variable declarations, rather than implicit use
of types within expressions. So code with an intermediate variable
might show a data type use that code with method chaining would
not. We believe that in terms of analysis effort, syntactic analysis
is an order of magnitude simpler than a full semantic analysis of
a program, and thus where syntactic analyses can be used as a
reasonable proxy for a fuller analysis, this is wise and justifiable.

6 CONCLUSION
We examined three research questions in this paper:

• We found that BlueJ users do not use all of the language, and
in particular the number of built-in data types they use is small.
We suggest that beginner languages only need one integral type,
one floating point type, a boolean and a string type built-in.
However, use of other types varies widely, and BlueJ users make
use of many different library classes.

• We found that although the BlueJ tool promotes a certain style of
coding, this does not seem to have a strong effect on users, who
are presumably instead influenced by their learning materials,
instructor, and prior experiences. Passive promotion of coding
practices in the tool does not seem to be a strong factor.

• We found that many coding patterns are stable over time in
this size of data set (roughly ten thousand projects in each of
2013 and 2019). The main shifts were found in use of syntax
constructs and data types, particularly a change in exception
behaviour and the use of static methods and fields. The usage
of library data types changed; we believe this was because of a
shift in the type of programming assignment being performed.

Our analyses were performed using small analyses on code
stored in the srcML format. Our experience was that this XML
format makes adding extra analyses straightforward, and we be-
lieve that this data format (and the Blackbox Mini data set that uses
it) is a promising avenue for source code analysis in programming
education research. An example analysis is given in Figure 1 and
uses under 20 lines of Python to count the number of source files in
a project with a Javadoc comment. Our other analyses are similar
in terms of code complexity.

An obvious avenue for our future work is to use further slices
taken from intervening years, both to improve the validity of our
analysis through increased sample size, and to check whether the
patterns over time are stable trends.

ACKNOWLEDGMENTS
We are grateful to Jonathan Maletic for introducing us to SrcML
and to King’s College London for their undergraduate research
fellowship scheme which supported one of the authors. We are
grateful to Charalampos Kyfonidis and Michael Kölling for their
comments on the draft.

REFERENCES
[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An Analysis of

Patterns of Debugging among Novice Computer Science Students. SIGCSE Bull.
37, 3 (June 2005), 84–88. https://doi.org/10.1145/1151954.1067472

[2] Efthimia Aivaloglou and Felienne Hermans. 2016. How Kids Code and How We
Know: An Exploratory Study on the Scratch Repository. In Proceedings of the
2016 ACM Conference on International Computing Education Research (Melbourne,
VIC, Australia) (ICER ’16). Association for Computing Machinery, New York, NY,
USA, 53–61. https://doi.org/10.1145/2960310.2960325

[3] Nikolaos Bafatakis, Niels Boecker, Wenjie Boon, Martin Cabello Salazar, Jens
Krinke, Gazi Oznacar, and Robert White. 2019. Python Coding Style Compliance
on Stack Overflow. In Proceedings of the 16th International Conference on Mining
Software Repositories (Montreal, Quebec, Canada) (MSR ’19). IEEE Press, 210–214.
https://doi.org/10.1109/MSR.2019.00042

[4] David J. Barnes and Michael. Kölling. 2017. Objects First with Java: A Practical
Introduction (6th ed.). Pearson/Prentice Hall. https://www.bluej.org/objects-first/

[5] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-
vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Mes-
sages Considered Unhelpful: The Landscape of Text-Based Programming Error
Message Research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 177–210.
https://doi.org/10.1145/3344429.3372508

[6] Jens Bennedsen and Carsten Schulte. 2010. BlueJ Visual Debugger for Learning
the Execution of Object-Oriented Programs? ACM Trans. Comput. Educ. 10, 2,
Article 8 (June 2010), 22 pages. https://doi.org/10.1145/1789934.1789938

[7] Neil C. C. Brown, AmjadAltadmri, Sue Sentance, andMichael Kölling. 2018. Black-
box, Five Years On: An Evaluation of a Large-Scale Programming Data Collection
Project. In Proceedings of the 2018 ACM Conference on International Computing
Education Research (Espoo, Finland) (ICER ’18). Association for Computing Ma-
chinery, New York, NY, USA, 196–204. https://doi.org/10.1145/3230977.3230991

[8] Neil C. C. Brown andMichael Kölling. 2020. BlackboxMini - Getting StartedWith
Blackbox Data Analysis. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education (Portland, OR, USA) (SIGCSE ’20). Association
for Computing Machinery, New York, NY, USA, 1387. https://doi.org/10.1145/
3328778.3367006

[9] Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting. 2014. Blackbox:
A Large Scale Repository of Novice Programmers’ Activity. In Proceedings of the
45th ACM Technical Symposium on Computer Science Education (Atlanta, Georgia,
USA) (SIGCSE ’14). Association for Computing Machinery, New York, NY, USA,
223–228. https://doi.org/10.1145/2538862.2538924

[10] Kevin Casey and David Azcona. 2017. Utilizing student activity patterns to
predict performance. International Journal of Educational Technology in Higher
Education 14, 1 (2017), 4. https://doi.org/10.1186/s41239-017-0044-3

[11] Michael L Collard, Michael John Decker, and Jonathan I Maletic. 2013. SrcML: An
Infrastructure for the Exploration, Analysis, and Manipulation of Source Code:
A Tool Demonstration. In Proceedings of the 2013 IEEE International Conference
on Software Maintenance (ICSM ’13). IEEE Computer Society, USA, 516–519.
https://doi.org/10.1109/ICSM.2013.85

[12] Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B. Rowe, and
Nasser Giacaman. 2018. Understanding Semantic Style by Analysing Student

Code. In Proceedings of the 20th Australasian Computing Education Conference
(Brisbane, Queensland, Australia) (ACE ’18). Association for Computing Machin-
ery, New York, NY, USA, 73–82. https://doi.org/10.1145/3160489.3160500

[13] Ansgar Fehnker and Remco de Man. 2019. Detecting and Addressing Design
Smells in Novice Processing Programs. In Computer Supported Education, BruceM.
McLaren, Rob Reilly, Susan Zvacek, and James Uhomoibhi (Eds.). Springer Inter-
national Publishing, Cham, 507–531.

[14] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to Design Programs: An Introduction to Programming and
Computing. The MIT Press.

[15] F. Hermans, K. T. Stolee, and D. Hoepelman. 2016. Smells in block-based program-
ming languages. In 2016 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 68–72.

[16] MariaHristova, AnanyaMisra,Megan Rutter, and RebeccaMercuri. 2003. Identify-
ing and Correcting Java Programming Errors for Introductory Computer Science
Students. In Proceedings of the 34th SIGCSE Technical Symposium on Computer
Science Education (Reno, Navada, USA) (SIGCSE ’03). Association for Computing
Machinery, New York, NY, USA, 153–156. https://doi.org/10.1145/611892.611956

[17] Matthew C Jadud. 2005. A First Look at Novice Compilation Behaviour Using
BlueJ. Computer Science Education 15, 1 (2005), 25–40. https://doi.org/10.1080/
08993400500056530

[18] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code Quality Is-
sues in Student Programs. In Proceedings of the 2017 ACM Conference on Inno-
vation and Technology in Computer Science Education (Bologna, Italy) (ITiCSE
’17). Association for Computing Machinery, New York, NY, USA, 110–115.
https://doi.org/10.1145/3059009.3059061

[19] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg. 2003. The
BlueJ System and its Pedagogy. Computer Science Education 13, 4 (2003), 249–268.
https://doi.org/10.1076/csed.13.4.249.17496

[20] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011. Habits of
Programming in Scratch. In Proceedings of the 16th Annual Joint Conference on
Innovation and Technology in Computer Science Education (Darmstadt, Germany)
(ITiCSE ’11). Association for Computing Machinery, New York, NY, USA, 168–172.
https://doi.org/10.1145/1999747.1999796

[21] Rohan Roy Choudhury, Hezheng Yin, and Armando Fox. 2016. Scale-Driven
Automatic Hint Generation for Coding Style. In Intelligent Tutoring Systems,
Alessandro Micarelli, John Stamper, and Kitty Panourgia (Eds.). Springer Interna-
tional Publishing, Cham, 122–132.

[22] Ben Shneiderman. 1976. Exploratory experiments in programmer behavior.
International Journal of Computer & Information Sciences 5, 2 (1976), 123–143.
https://doi.org/10.1007/BF00975629

[23] P. Techapalokul and E. Tilevich. 2017. Understanding recurring quality problems
and their impact on code sharing in block-based software. In 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). 43–51.

[24] Nghi Truong, Paul Roe, and Peter Bancroft. 2004. Static Analysis of Students’
Java Programs. In Proceedings of the Sixth Australasian Conference on Computing
Education - Volume 30 (ACE ’04). Australian Computer Society, Inc., AUS, 317–
325.

[25] Eliane S. Wiese, Anna N. Rafferty, Daniel M. Kopta, and Jacqulyn M. Anderson.
2019. Replicating Novices’ Struggles with Coding Style. In Proceedings of the 27th
International Conference on Program Comprehension (Montreal, Quebec, Canada)
(ICPC ’19). IEEE Press, 13–18. https://doi.org/10.1109/ICPC.2019.00015

https://doi.org/10.1145/1151954.1067472
https://doi.org/10.1145/2960310.2960325
https://doi.org/10.1109/MSR.2019.00042
https://www.bluej.org/objects-first/
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/1789934.1789938
https://doi.org/10.1145/3230977.3230991
https://doi.org/10.1145/3328778.3367006
https://doi.org/10.1145/3328778.3367006
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1186/s41239-017-0044-3
https://doi.org/10.1109/ICSM.2013.85
https://doi.org/10.1145/3160489.3160500
https://doi.org/10.1145/611892.611956
https://doi.org/10.1080/08993400500056530
https://doi.org/10.1080/08993400500056530
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1145/1999747.1999796
https://doi.org/10.1007/BF00975629
https://doi.org/10.1109/ICPC.2019.00015

	Abstract
	1 Introduction
	1.1 Related work

	2 BlueJ and Blackbox
	2.1 Blackbox

	3 Analyses and Results
	3.1 Data and Method
	3.2 Javadoc Comments
	3.3 Main method
	3.4 Wrong naming conventions
	3.5 Data type usage
	3.6 Java constructs and modifiers
	3.7 Lambda Expressions

	4 Discussion
	4.1 RQ1: how much use do novices make of various parts of the Java language?
	4.2 RQ2: how effective is passively promoting a particular code style in a tool?
	4.3 RQ3: do these issues of coding style and language usage change over time?

	5 Limitations
	6 Conclusion
	References

