
Web-scale Data Gathering with BlueJ

Ian Utting, Neil Brown, Michael Kölling, Davin McCall and Philip Stevens
University of Kent

Canterbury, UK

{iau,nccb,mik,D.McCall,plcs}@kent.ac.uk

ABSTRACT
Many investigations of students' initial learning of programming
are based on small-scale studies of their interactions with a
learning environment. Although this research has led to
significant improvements in the understanding of student
behaviour (and tool support), it has often been restricted to small
numbers of students at single institutions. This paper describes an
initiative to instrument the widely-used BlueJ environment to
collect data on a much larger scale, and make that data available
to Computing Education researchers. The availability of this data
has the potential to enable research not previously possible. This
paper discusses the type of data that will be gathered, the
restrictions placed on identifying students, and mechanisms for
associating the data with contextual data gathered outside the
scope of the initiative.

Categories and Subject Descriptors
K.3.2 [Computing Milieux]: Computer and Information Science
Education – Computer science education.

General Terms
Measurement, Experimentation.

Keywords
CS1, student behaviour, initial programming, BlueJ, data
collection.

1. BLUEJ
BlueJ [6] is a Java IDE specifically designed for beginning
programmers. It was originally released free-of-charge in 1999
and is now published under the GPL. The software itself is
translated into 17 different languages and is used in introductory
programming courses at secondary schools and Universities
worldwide. The most common use of BlueJ is in initial
programming courses, with students moving on to full-featured
professional environments fairly soon thereafter. The BlueJ
website lists almost 1000 Universities which have indicated that
they are using the software.

Since its first release, BlueJ has been downloaded over 10 million
times, with current downloads running at over 2.5 million per

year. This number is influenced by the number of new major
releases in any given year, as well as an indeterminate number of
downloads where the software is never installed, or is tried once
and thrown away, or is downloaded once and installed on many
machines.

Since 2009, the standard distribution of BlueJ has contained a
function that reports use of the software (including BlueJ version,
Java version and operating system) for maintenance and planning
purposes. For instance, abandoning support for older versions of
Java would have an impact on users of older Apple computers,
which makes it important to know what proportion of the BlueJ
user base are using them. This data gives a finer-grained picture
of the use of BlueJ than raw numbers of downloads (but it still
does not allow institutions, or individuals, to be identified).

Figure 1: Unique BlueJ users per month in 2011

Data collected by this method is shown in the graph above for
2011 (Figure 1), which reports between 95,000 and 290,000
distinct BlueJ users depending on the month, with distinct peaks
reflecting the typical start-date of school and college courses.
Data also showed that the average duration of a user's contact
with BlueJ (i.e. from first recorded use to last recorded use) was
around 90 days, and that BlueJ had been installed in 202 countries
around the world, with close to 1,000,000 unique users reported in
the US. The 10 countries with the highest numbers of reported
active BlueJ users are listed in Table 1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICER’12, September 9–11, 2012, Auckland, New Zealand.
Copyright 2012 ACM 978-1-4503-1604-0/12/09...$15.00.

1

Rank Country Users % of all users

1 Germany
35412

3
23.1%

2 United States
32748

1
21.4%

3 India
13659

2
8.9%

4
United
Kingdom

78005 5.1%

5 Brazil 60978 4.0%

6 Chile 47576 3.1%

7 Spain 38699 2.5%

8 Philippines 36383 2.4%

9 Canada 33417 2.2%

10 Mexico 29717 1.9%

Table 1: Top ten countries for BlueJ use (2011). Includes only
users seen more than once.

The number of users is under-reported, as only users whose
installation can send an HTTP request to an external website are
recorded. This will have a significant impact on reported uses in
regions where internet access is not universal (e.g. India, where
BlueJ has 200,000 reported installations, but is used in some very
large-scale "Standard 10" qualifications), or where local security
policies bar internet access (e.g. secondary schools in the UK and
USA; and China).

Conversely, the total numbers of users may be inflated by use of
BlueJ at sites that routinely re-image PC's between uses, causing
users to lose their profile data and BlueJ to consider them as new
users on every invocation.

2. BEGINNING STUDENTS’
INTERACTIONS WITH IDES
There have been many studies, using many approaches, of
students’ behaviour in introductory programming classes. Here
we will restrict ourselves to discussing those that focused on their
interactions with their programming environment, and the
resulting program texts.

Thomas et al [7] recorded 4.7 million actions over a six-week
period from 141 students using an Ada IDE, but these were very
low-level events (e.g. captured from the GUI framework) and
data-cleaning proved to be a significant problem, although they
did also establish the viability of using such data to answer
questions formulated after the data was gathered.

Ahmadzadeh et al [1] collected much coarser-grained data
(including source code) from 192 students in the School of CS &
IT at the University of Nottingham, mostly focused on
compilation errors encountered by students whilst using the
JCreator environment.

Edwards et al [3] collected result-focused data from 1101 students
over a five-year period. The data gathered was students’ work-in-
progress as they submitted their evolving programs for testing by,

and feedback from, the Web-CAT tool. They eventually captured
89,879 submissions from two courses using Java and one using
C++.

Jadud [5] and Fenwick et al [4] have recently used bespoke
extensions to the BlueJ Java IDE to capture student interactions at
an intermediate granularity, capturing the input to and output
from the Java compiler at every invocation. Jadud captured
42,000 events from 186 students over two years, and Fenwick et
al captured 55,000 from 110 students in a single year.

The questions addressed by these studies, in their published
output, has been quite diverse, from compilation and editing
behaviour to time-on-task and start-time-to-deadline differences.
In all cases except Thomas et al, the particular research questions
to be addressed were part of the design of the data-gathering
apparatus, but in many cases the data proved amenable for use in
answering other questions, which became apparent only after the
data had been gathered. Some of the studies have gathered very
large numbers of event records, and some have involved large
numbers of students, but in the published cases, all the students
were studying at a single institution, and only in no cases was the
tool used to gather the data re-used. We speculate that this was
because the tool in question was implemented as an extension to
BlueJ, talking to a Web Service fronting a standard database. This
allowed not only for simple installation of the back-end, but also
(and probably more crucially) simple installation of the front-end
in a tool (BlueJ) which the students were already using, and
without needing negotiation with those setting up student Labs.

These latter two issues seem to pose a significant barrier-to-entry
to those trying to initiate or participate in these sorts of studies. If
the instrumented tool is not part of the students’ normal working
environment, then their use of it will be, at best, artificial and
potentially confounded by unfamiliarity with the tool itself. If a
tool (or variant of a tool) needs to be specially installed by
systems administrators (e.g. for use in a Lab), then that often
requires significant lead-time, and it may be difficult to restrict
use of the tool to the target population and context.

A further significant barrier to the implementation of these studies
across multiple institutions has been the need to undertake paper-
based informed consent protocols, requiring significant
commitment from staff at all participating institutions, not just the
initial investigators’.

3. DATA GATHERING
We propose a data-gathering project that will leverage the
widespread use of the BlueJ system to gather more data than the
Thomas et al study, from more students than the Edwards et al
study, at a similar granularity to the Jadud and Fenwick et al
studies. More importantly, we will gather data from students at
many institutions around the world, but at a relatively consistent
point in their formation as programmers.

3.1 What will be gathered?
One of the important decisions in the design of this work is the
selection of the data to be captured by our mechanism. The exact
detail of the data will determine the nature of the research
questions that may later be investigated using this data. The
challenge, therefore, is to capture data that allows as wide a
selection of investigations later on, and not restricting its use to a
set of previously determined studies.

2

The aim of capturing data widely (to allow the investigation of as
many research questions as possible) has to be offset against
issues of privacy and practicality. We have to ensure
anonymisation of the data collected, and we have to ensure that
the volume of data is manageable, both in the collection phase
and the evaluation phase.

This latter aspect is closely related to the question of the
abstraction level of the data being collected. On one end of the
spectrum, low level events (such as key strokes and mouse events,
potentially including every mouse movement) could be logged; at
the other extreme, higher level events - such as logical
interactions with system components - might be recorded. While
low level data offers a more "complete" picture of activity,
collection and evaluation is more complex, and often necessitates
a transformation into higher-level events anyway, which can be
confounded by variability and “noise” in the event traces. Higher
level data is easier to interpret, but may exclude investigation of
some research questions not previously anticipated.

For the BlueJ data-gathering project, we currently plan to collect
the following data, tagged with the UID and timestamped:

 Compilation events – the result of every compilation
ordered by the student, including details of any errors
reported, and a snapshot of the code submitted to the
compiler.

 Code edits, on a line-by-line basis. That is, when a line
of code is edited, the modified line will be transmitted
once the user moves the cursor to a different line. We
will differentiate between single line and multi-line
edits, the latter being likely copy-and-paste or
reformatting operations, and separately identify edits
caused by code-completion actions (i.e. auto-suggested
methods names).

 Interactive invocations, including method calls and
object creation, on the object bench and in the codepad
(i.e. all user code invocation). The object bench is a
unique feature of BlueJ which allows students to
explore the behaviour of their programs interactively.
The codepad is a more traditional direct code entry and
execution mechanism which, in BlueJ, can interact with
objects recorded in the object bench.

 Unit-testing – recording the execution and results of
tests which use BlueJ’s integrated JUnit support.

 Project-open and project-close events, giving a handle
on time-on-task.

 Debugging – when the debugger is opened/closed, when
breakpoints are set, when breakpoints are hit, when
'step'/'continue' are used.

 Use of version control – commit/update commands,
through BlueJ’s integrated SVN support.

 Location of the user to the “regional” level: the step
between the national and the city. For some countries,
this will not be available, so only the country will be
recorded. Anonymity of institution (if not of individual
student) requires this degree of imprecision.

3.2 How much data do we expect to gather?
The data gathering mechanism will use an explicit opt-in
approach, with students having to consent to taking part via a

pop-up dialogue in BlueJ when they first use it. Students will be
able to rescind their consent at any time, and students under the
age of 16 will be warned-off (they cannot give their consent under
UK law). Therefore, the total amount of data will be determined
by the number of overall BlueJ users and the proportion of users
who agree to be involved. At current usage levels, derived from
the usage monitoring mechanism described above, this will lead
to a maximum of around 27,000 users per day, performing on
average 3 sessions per day, and generating about 100 events per
session over an average period of 90 days. This would mean
overall a maximum case of 8 million events per day, or just under
100 events per second, and a total of 3 terabyte of data per year.

3.3 Who will we gather it from?
Students agreeing to contribute data to the repository will not be
identified by name or institution. To help to ensure that student
names are not accidentally gathered, “class comments” (which is
where Javadoc @author tags appear) will be blanked out at source
(blanked out rather than deleted to preserve line numbers, etc. for
matching to compiler output). We will make no attempt to detect
and blank identifying information placed elsewhere in the source.

For every participating user, on every BlueJ installation with
which they work, a unique identifier (UID) will be generated and
used to tag all the data generated from that place. Using this
mechanism, multiple sessions by the same student (in the same
place) over time can be linked, allowing longitudinal studies,
without identifying the individual. However, an individual student
may have more than one UID, either because they work on more
than one machine (e.g. in a Lab and at home), or because a
particular Lab setup does not preserve students’ identity across
login sessions. In this case, the user will appear as two users,
with histories that are incomplete, but internally consistent.

4. WORKING WITH THE DATA
We intend this project to benefit the Computing Education
research community, and as such we will provide access to all the
collected data for researchers at bona fide Universities and
research institutes. This access will be in the form of SQL-
queries on a read-only mirror of the collected data, hosted by us.

We anticipate that researchers working on the data will benefit
from collaborating in the production of common SQL-queries and
tools and more general approaches to mining the data; and will
likely be willing to share the resulting tools with other
researchers. To support such collaboration and sharing of
resources, we will host a community website for the researchers
in the style of the existing Greenroom [2], which supports the
sharing and collaborative development of resources through a
Wiki-style interaction mechanism.

The data that we collect directly will be anonymised. However,
we anticipate that researchers will want to be able to run studies at
their local institution where they collect additional data (age,
gender, programming experience, etc) about the participants, and
then be able to match the data with the participant’s user in the
database. To support this, users will be able to enter a code
(provided by the researchers running the local study) that
identifies them in the data. Data retrieved from the database can
be restricted by tag, but tags will not be directly retrievable. Thus
a researcher can restrict the data retrieved to only that with their
tag (i.e. only the users participating in their experiment), but
cannot see the tags applied to any other data, effectively denying
them the ability to “see” other cohorts within the data.

3

Beyond this, it is clearly possible for researchers to get students to
place identifying material (either at the student or intervention
level) into their source code outside the class-comment. But such
data will not be indexed in the repository, and so retrieving data
on the basis of such material will be highly inefficient (unless pre-
filtered on the basis of the indexed tags described above.

Of course, the per-student UIDs are stored locally, and so can be
retrieved by a researcher (given the consent of the student) to tie-
in with individually collected local data.

Any researcher who wished to identify their own students, or
projects, will need to obtain local approval for their experiment
(human subjects, or ethical, approval) as required. Approval for
collection, use and sharing of the global, anonymised, data has
already been obtained by the authors at the institution where the
data will be kept.

5. SUMMARY
We propose to instrument the widely-used BlueJ beginners’
programming environment to collect anonymised data about
students’ behaviour. This data will include code-edits,
compilation events and other events such as tool invocations. The
resulting data-set will be made available to other Computing
Education researchers in order to support their research.

We believe that the scale of this data-set will enable not only
quantitative differences in research (due to the large number of
users likely to be involved in the collection), but also consequent
qualitative differences. The large scale means that less-frequently
used features (such as the debugger) or rarer error messages (such
as private/public access problems) will have enough data that they
can actually be studied, where previously this was not possible.
The multi-institutional, even multi-national, scope of the data
collection will allow comparisons between groups of students
which have not been possible in smaller-scale research.

We also believe that this study has the potential to greatly
enhance all of Computing Education research, by sharing the
large body of data to enable collaborative research by researchers
beyond those involved in collecting the data, and by researchers
who do not necessarily have the opportunity (or time) to collect
their own data at a teaching institution.

6. REFERENCES
[1] Ahmadzadeh, M., Elliman, D., and Higgins, C., An Analysis

of Patterns of Debugging among Novice Computer Science
Students. In Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer
science education (ITiCSE ’05) (Caparica, Portugal, 2005),
pp. 84-88

[2] Brown, N., Stevens, P., and Kölling, M. 2010. Greenroom: a
teacher community for collaborative resource development.
In Proceedings of the fifteenth annual conference on
Innovation and technology in computer science education
(ITiCSE '10). ACM, New York, NY, USA, 305-305.

[3] Stephen H. Edwards, Jason Snyder, Manuel A. Pérez-
Quiñones, Anthony Allevato, Dongkwan Kim, and Betsy
Tretola. 2009. Comparing effective and ineffective behaviors
of student programmers. In Proceedings of the fifth
international workshop on Computing education research
workshop (ICER '09). ACM, New York, NY, USA, 3-14.

[4] Fenwick, J. B., Norris, C., Barry, F. E., Rountree, J., Spicer,
C. J., and Cheek, S. D. Another look at the behaviors of
novice programmers. In Proc. 40th ACM Tech. Symp.
Computer Science Education, ACM, New York, NY, 2009,
pp. 296–300.

[5] Jadud, M. A first look at novice compilation behaviour using
BlueJ. Computer Science Education, 15(1):25–40,
March2005.

[6] Kölling, M., Quig, B., Patterson, A., and Rosenberg, J. The
BlueJ system and its pedagogy. Journal of Computer Science
Education, Special issue on Learning and Teaching Object
Technology, 13(4), 2003.

[7] Thomas, R., Kennedy, G.E., Draper, S., Mancy, R., Crease,
M., Evans, H., and Gray, P. Generic usage monitoring of
programming students. In Proceedings of the 20th Annual
Conference of the Australasian Society for Computers in
Learning in Tertiary Education (ASCILITE ‘03) (Adelaide,
Australia, Dec 7-10, 2003).

4

